• Title/Summary/Keyword: interactive simulation workspace

Search Result 2, Processing Time 0.024 seconds

Miniature and Guider Interaction for an Immersive Simulation Workspace (몰입형 시뮬레이션 환경을 위한 축소 모형 및 가이더 인터랙션)

  • Kim Myoung-Hee;Cho Eun;You Hyo-Sun;Rhee Seon-Min;Park Jiyoung
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.11a
    • /
    • pp.144-149
    • /
    • 2005
  • 본 논문에서는 $CAVEW^{TM}-like$ 시스템과 같은 대형 디스플레이 기반의 몰입형 시뮬레이션 환경에 필요한 인터랙션 기법을 제안한다. 축소 모형(miniature) 인터랙션은 원거리에 있는 객체를 쉽게 선택하거나 조작하기 위하여 가상 세계 전체를 축소하여 사용자 근처에 디스플레이하고 이를 조작함으로써 대상 객체와 상호작용 할 수 있도록 해준다. 또한, 조감도(bird's eye view)로 표현되는 지도상에 사용자 위치를 표시하여 가상 세계 탐색시 이동 경로를 쉽게 파악할 수 있도록 하였다. 축소 모형은 투명 패널 인터페이스를 통하여 보여지며 사용자는 이를 이용하여 택타일 피드백(tactile feedback)을 제공 받을 수 있다. 그리드(grid)를 이용한 비주얼 가이더는 가상 세계 내에 그리드를 디스플레이하여 대상 객체와 사용자간의 위치 관계를 쉽게 파악할 수 있도록 해준다. 일반적으로 대형 디스플레이 환경에서의 인터랙션은 정확한 깊이 인식이 어렵기 때문에 인터랙션 시사용자의 불필요한 행위를 유발하게 된다. 본 논문에서 제안하는 기법은 이 같은 문제점을_개선하여 객체 조작 시 느껴지는 피로감을 최소화 시킬 수 있으며 다양한 몰입 및 상황 기반 시뮬레이션 어플리케이션에 적용되어 활성화 될 수 있다.

  • PDF

A CAD/CAM system for designing robotic painting line (도장공정의 로보틱자동화를 위한 설계 지원 CAD/CAM 시스템)

  • 서석환;조정훈;강대호;전치혁;박춘열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1129-1135
    • /
    • 1993
  • For successful implementation of robotic painting system, a structured design and analysis procedure is necessary. In designing robotic system, both functional and economical feasibility should be investigated. As the robotization is complicated task involving implementation details(such as robot selection, accessory design, and spatial layout) together with operation details, a computerized method should be sought. However, any conventional robotic design system and off-line programming system cannot accomodate such a need. In this research, we develop an interactive design support system for robotization of a cycle painting line. With the developed system called SPRPL(Simulation Package for Robotic Painting Line) users can design the painting objects(via FRAME module), select robot model (ROBOT), design the part hanger (FEEDER), and arrange the workcell. After motion programming (MOTION), the design is evaluated in terms of: a) workspace analysis, b) coating thickness analysis, and c) cycle time (ANALYSIS). By iterative design and evaluation procedure, a feasible and efficient robotic design can be attained. As the developed system has motion planning and analysis features, it can be also used as an off-line robot programming system in operation stage. Including the details of each module, this paper also presents a case study made for an actual painting line.

  • PDF