• Title/Summary/Keyword: intermetallic phases

Search Result 115, Processing Time 0.026 seconds

Fabrication Process of Laminated Composites by Self-propagating High-temperature Synthesis Reaction (자전고온반응에 의한 적층복합재료의 제조공정)

  • 김희연;정동석;홍순형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.155-158
    • /
    • 2002
  • Fabrication process of metal/intermetallic laminated composites by using self-propagating high temperature synthesis(SHS) reactions between Ni and Al elemental metal foils have been investigated. Al foils were sandwiched between Ni foils and heated in a vacuum hot press to the melting point of aluminium. SHS reaction kinetics was thermodynamically analyzed through the final volume fraction of the unreacted Al related with the initial thickness ratio of Ni:Al and diffusion bonding stage before SHS reaction. Thermal aging of laminated composites resulted in the formation of functionally gradient series of intermetallic phases. Microstructure showed that the main phases of intermetallics were NiAl and $Ni_3Al$ having higher strength at room and high temperatures. The volume fractions of intermetallic phases were measured as 82.4, 58.6, 38.4% in 1:1, 2:1, 4:1 initial thickness ratio of Ni:Al.

  • PDF

Two-step Solution Treatment for Enhancement of Mechanical Properties of AlSiCu Aluminum Alloy (Al6Si2Cu 알루미늄 합금의 기계적 물성 향상을 위한 이단계 고용화 열처리)

  • Park, Sang-Gyu;Kim, Chung-Seok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.3
    • /
    • pp.97-103
    • /
    • 2018
  • The objective of this study is to develop the mechanical properties of AlSiCu aluminum alloy by the two-step solution heat treatment. The microstructure of gravity casting specimen represents a typical dendrite structure having a secondary dendrite arm spacing (SDAS) of 40 mm. In addition to the Al matrix, a large amount of coarsen eutectic Si phase, $Al_2Cu$ intermetallic phase, and Fe-rich phases are generated. The eutectic Si phases are fragmented and globularized with solution heat treatment. Also, the $Al_2Cu$ intermetallic phase is resolutionized into the Al matrix. The $2^{nd}$ solution temperature at $525^{\circ}C$ might be a optimum condition for enhancement of mechanical properties of AlSiCu aluminum alloy.

Lifetime Estimation due to IMC(Intermetallic Compound) formation between Au wire and Al pad (Au wire와 Al pad사이의 IMC(Intermetallic Compound) 형성에 의한 수명예측)

  • Son, Jung-Min;Chang, Mi-Soon;Kwack, Kae-Dal
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1295-1300
    • /
    • 2008
  • During the manufacturing and the service life of Au-Al wire bonded electronic packages, the ball bonds experience elevated temperatures and hence accelerated thermal diffusion reactions that promote the transformation of the Au-Al phases and the IMC growth. In this paper, the IC under high temperature storage (HTS) tests at $175^{\circ}C,\;200^{\circ}C$, and $250^{\circ}C$ are meticulously investigated. Thermal exposure resulted in the IMC growth, Kirkendall void and the crack of the Au-Al phases. The crack propagation occurs resulting in the failure of the Au-Al ball bonds. As the IC was exposed at the high temperature, decreased in the lifetime.

  • PDF

Effects of Substrate Texture on Galvannealing Behavior of High Tensile GA Sheet Steel (고장력 합금화용융아연도금 강판의 합금화 거동에 미치는 집합조직의 영향)

  • 문만빈;신철수;오현운;남궁성;박용범
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.31-32
    • /
    • 2003
  • In the Present study, the effect of galvannealing conditions on the phase distribution of the Zn-Fe intermetallic phases in the coating layer of the galvannealed steel sheets(GA) was investigated in an interstitial free steel and two kinds of high strength steels. The composition profiles of the coating layers were analyzed using AA and EDS analysis, and the distribution of the intermetallic phases was examined with the aids of X-ray diffraction. On the basis of the pole figure and OIM analyses, it was clarified that the preferred orientation of the $\zeta$ phase depended on the development of the $\gamma$-fibre texture in the substrate.

  • PDF

The Effect of Fabrication Process Parameters on the Microstructures of Intermetallic/Metal Laminated Composite by Self-propagating High-temperature Synthesis (자전고온반응에 의한 금속간화합물/금속 적층복합재료의 제조공정변수가 미세조직에 미치는 영향)

  • 김희연;정동석;홍순형
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.68-74
    • /
    • 2003
  • In this paper, intermetallic/metal laminated composites have been successfully produced that utilizes SHS reactions between Ni and Al elemental metal foils. The reaction between Ni and Al started from the nucleation and growth of NiA1$_3$ and was followed by the diffusional growth of Ni$_2$A1$_3$ between Ni and NiA1$_3$. The SHS reaction was thermodynamically analyzed through the final volume fraction of the non-reacted Al related with the initial thickness ratio of Ni:Al and prior heat treatment. Thermally aging these 1aminates resulted in formation of a functionally gradient series of intermetallic phases. Microstructure showed that the intermetallic volume percent was 82, 59.5, 40% in the 1:1, 2:1, 4:1 thickness ratio specimen. Main phases of the intermetallic were NiAl and Ni$_3$Al having higher strength at room and high temperatures.

Mechanical Properties of Intermetallic/Metal Laminated Composite by SHS Reaction (자전고온반응에 의한 금속간화합물/금속 적층복합재료의 기계적 특성)

  • ;;Manabu Enoki
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.60-63
    • /
    • 2002
  • Metal/intermetallic laminated composites have been manufactured by SHS reactions between Ni and Al elemental metal foils. Microstructure showed that the intermetallic volume fraction was 55%, 45%, 35% in the 1:1, 2:1, 4:1 thickness ratio(Ni:Al) specimen and the main phases of the intermetallic were transformed from $Ni_2Al_3$ to NiAl when the thickness ratio was increased. Tensile strength and elongation were increased when the volume fraction of Ni metallic phase was increased. Under assumptions of isostrain condition, the tensile strength of metal/intermetallic laminated composites didn't obey the ROM due to the thermal residual stress and this was confirmed by X-ray residual stress analysis. Fracture toughness results by the SENB test showed R-curves with upward curvature based on LSB condition. Bridging stress based on LSB condition was determined by the curve fitting analysis, In-situ observed microstructure during fracture test showed that the various bridging mechanism such as crack bridging, crack branching and ductile failure of metallic layer were occurred

  • PDF

Optimal Double Heat Treatment Process to Improve the Mechanical Properties of Lightweight AlSiCu Alloy (자동차 경량소재 AlSiCu 합금의 기계적 특성을 개선하기 위한 최적의 이중 열처리공정)

  • Park, Sang-Gyu;Kim, Chung-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.102-108
    • /
    • 2018
  • The objective of this study is to develop the mechanical properties of an AlSiCu aluminum alloy using the two-step solution heat treatment. The microstructure of the gravity casting specimen represents a typical dendrite structure with a secondary dendrite arm spacing (SDAS) of 40 um. In addition to the Al matrix, a large amount of coarsen eutectic Si phase, $Al_2Cu$ intermetallic phase, and Fe-rich phases is generated. The eutectic Si phases are fragmented and globularized with the solution heat treatment. The $Al_2Cu$ intermetallic phase is also resolutionized into the Al matrix. The $2^{nd}$ solution temperature at $525^{\circ}C$ may be an optimal condition to enhance the mechanical properties of the AlSiCu aluminum alloy.

Mechanical Alloying of GaSe and GaTe Systems (GaSe및 GaTe계의 기계적 합금화 거동)

  • Choi, Jung Bo;Ahn, Jung-Ho
    • Journal of Powder Materials
    • /
    • v.21 no.5
    • /
    • pp.338-342
    • /
    • 2014
  • In the present work, we investigated the mechanical alloying of binary Ga-Se(1:1) and Ga-Te(1;1) sysyems. The high-energy ball-milling was performed at $40^{\circ}C$ where one of constituents (Ga) is molten state. The purpose of the work was to see whether reactions between constituent elements are accelerated by the presence of a liquid phase. During the ball-milling, the liquid Ga phase completely disappeared and the resulting powders consist of nanocrystalline grain of ~20 nm with partly amorphized phases. However, no intermetallic compounds formed in spite of the presence of the liquid phases which has much higher diffusivity than solid constituents. By subsequent heat-treatments, the intermetallic compounds such as GaSe and GaTe formed at relatively low temperatures. The formation temperature of theses compound was much lower than those predicted by equilibrium phase diagram. The comparison of the ball-milled powders with un-milled ones indicated that the easy formation of intermetallic compound or allying occurs at low temperatures.

Effect of Solution Treatment on Corrosion Behavior of AZ91-2%Ca Magnesium Casting Alloy (주조용 AZ91-2%Ca 마그네슘 합금의 부식 거동에 미치는 용체화처리의 영향)

  • Moon, Jung-Hyun;Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.4
    • /
    • pp.190-199
    • /
    • 2015
  • The study is intended to investigate the effect of solution treatment on microstructure and corrosion behavior of AZ91(Mg-9%Al-1%Zn-0.3%Mn)-2%Ca casting alloy. In as-cast state, the AZ91-2%Ca alloy consisted of intermetallic ${\beta}(Mg_{17}Al_{12})$, $Al_8Mn_5$ and $Al_2Ca$ phases in ${\alpha}-(Mg)$ matrix. After the solution treatment, Al within the ${\alpha}-(Mg)$ matrix was distributed more homogeneously, along with the slight decrease in the total amount of intermetallic compounds. The corrosion resistance of the AZ91-2%Ca alloy was improved after the solution treatment. The microstructural examinations for the solution-treated samples revealed that the better corrosion resistance may well be related to the incorporation of more oxides and hydroxides such as $Al_2O_3$, $Al(OH)_3$, CaO and $Ca(OH)_2$ into the surface corrosion product without dissolution of the intermetallic phases along the grain boundaries.

Effect of Thermal Aging on Intermetallic Compound Growth Kinetics of Au Stud Bump (Au stud 범프의 금속간화합물 성장거동에 미치는 시효처리의 영향)

  • Lim, Gi-Tae;Lee, Jang-Hee;Kim, Byoung-Joon;Lee, Ki-Wook;Lee, Min-Jae;Joo, Young-Chang;Park, Young-Bae
    • Korean Journal of Materials Research
    • /
    • v.18 no.1
    • /
    • pp.45-50
    • /
    • 2008
  • Microstructural evolution and the intermetallic compound (IMC) growth kinetics in an Au stud bump were studied via isothermal aging at 120, 150, and $180^{\circ}C$ for 300hrs. The $AlAu_4$ phase was observed in an Al pad/Au stud interface, and its thickness was kept constant during the aging treatment. AuSn, $AuSn_2,\;and\;AuSn_4$ phases formed at interface between the Au stud and Sn. $AuSn_2,\;AuSn_2/AuSn_4$, and AuSn phases dominantly grew as the aging time increased at $120^{\circ}C,\;150^{\circ}C,\;and\;180^{\circ}C$, respectively, while $(Au,Cu)_6Sn_5/Cu_3Sn$ phases formed at Sn/Cu interface with a negligible growth rate. Kirkendall voids formed at $AlAu_4/Au$, Au/Au-Sn IMC, and $Cu_3Sn/Cu$ interfaces and propagated continuously as the time increased. The apparent activation energy for the overall growth of the Au-Sn IMC was estimated to be 1.04 eV.