• Title/Summary/Keyword: interpolation problem

Search Result 393, Processing Time 0.027 seconds

On the Use of Momentum Interpolation Method for flows Involving A Large Body force (바디포오스가 큰 유동해석시 운동량보간법의 사용에 관한 연구)

  • Choi Seok-Ki;Kim Seong-O;Choi Hoon-Ki
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.553-556
    • /
    • 2002
  • A numerical study on the use of the momentum interpolation mettled for flows with a large body force is presented. The inherent problems of the momentum interpolation method are discussed first. Numerical experiments are performed for a typical flow involving a large body force. The tact that the momentum interpolation method may result in physically unrealistic solutions is demonstrated. Numerical experiments changing the numerical grid have shown that a simple way of removing the physically unrealistic solution is a proper grid refinement where there is a large pressure gradient. An effective way of specifying the pressure and pressure correction at the boundary by a local mass conservation near the boundary is proposed, and it is shown that this method can effectively remove the inherent problem of the specification of pressure and pressure correction at the boundary when one uses the momentum interpolation method.

  • PDF

Incompatible 3-node interpolation for gradient-dependent plasticity

  • Chen, G.;Baker, G.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.1
    • /
    • pp.87-97
    • /
    • 2004
  • In gradient-dependent plasticity theory, the yield strength depends on the Laplacian of an equivalent plastic strain measure (hardening parameter), and the consistency condition results in a differential equation with respect to the plastic multiplier. The plastic multiplier is then discretized in addition to the usual discretization of the displacements, and the consistency condition is solved simultaneously with the equilibrium equations. The disadvantage is that the plastic multiplier requires a Hermitian interpolation that has four degrees of freedom at each node. Instead of using a Hermitian interpolation, in this article, a 3-node incompatible (trigonometric) interpolation is proposed for the plastic multiplier. This incompatible interpolation uses only the function values of each node, but it is continuous across element boundaries and its second-order derivatives exist within the elements. It greatly reduces the degrees of freedom for a problem, and is shown through a numerical example on localization to yield good results.

HILBERT-SCHMIDT INTERPOLATION FOR OPERATORS IN TRIDIAGONAL ALGEBRAS

  • Kang, Joo-Ho;Kim, Ki-Sook
    • Journal of applied mathematics & informatics
    • /
    • v.10 no.1_2
    • /
    • pp.227-233
    • /
    • 2002
  • Given operators X and Y acting on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. An interpolating operator for n-operators satisfies the equation AX$\sub$i/=Y$\sub$i/, for i=1,2, ‥‥, R. In this article, we investigate Hilbert-Schmidt interpolation for operators in tridiagonal algebras.

SELF-ADJOINT INTERPOLATION FOR VECTORS IN TRIDIAGONAL ALGEBRAS

  • Jo, Young-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.845-850
    • /
    • 2002
  • Given vectors x and y in a filbert space H, an interpolating operator for vectors is a bounded operator T such that Tx = y. An interpolating operator for n vectors satisfies the equation $Tx_i=y_i$, for i = 1, 2 …, n. In this article, we investigate self-adjoint interpolation problems for vectors in tridiagonal algebra.

UNITARY INTERPOLATION PROBLEMS IN CSL-ALGEBRA ALGL

  • Jo, Yong-Soo;Kang, Joo-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.207-213
    • /
    • 2003
  • Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx=y. An interpolating operator for n-vectors satisfies the equation Ax$_{i}$=y$_{i}$. for i=1,2, …, n. In this article, we investigate unitary interpolation problems in CSL-Algebra AlgL : Let L be a commutative subspace lattice on a Hilbert space H. Let x and y be vectors in H. When does there exist a unitary operator A in AlgL such that Ax=y?

Generalized Cylinder based on Linear Interpolation by Direction Map

  • Kim, Hyun;Kim, Hyoung-Sun;Lee, Joo-Haeng
    • International Journal of CAD/CAM
    • /
    • v.3 no.1_2
    • /
    • pp.77-83
    • /
    • 2003
  • We propose two algorithms to generate (1) polygonal meshes and (2) developable surface patches far generalized cylinders defined by contours of discrete curves. To solve the contour blending problem of generalized cylinder, the presented algorithms have adopted the algorithm and related properties of LIDM (linear interpolation by direction map) that interpolate geometric shapes based on direction map merging and group scaling operations. Proposed methods are fast to compute and easy to implement.

An interpolation method of b-spline surface for hull form design

  • Jung, Hyung-Bae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.4
    • /
    • pp.195-199
    • /
    • 2010
  • This paper addresses the problem of B-spline surface interpolation of scattered points for a hull form design, which are not arbitrarily scattered, but can be arranged in a series of contours permitting variable number of points in the contours. A new approach that allows different parameter value for each point on the same contour has been adopted. The usefulness and quality of the interpolation has been demonstrated with some experimental results.

INVERTIBLE INTERPOLATION PROBLEMS IN CSL-ALGEBRA ALGL

  • Jo, Young-Soo;Kang, Joo-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.359-365
    • /
    • 2003
  • Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx = y. In this article, we investigate invertible interpolation problems in CSL-Algebra AlgL : Let L be a commutative subspace lattice on a Hilbert space H and x and y be vectors in H. When does there exist an invertible operator A in AlgL suth that An = ㅛ?

GEOMETRIC HERMITE INTERPOLATION FOR PLANAR PYTHAGOREAN-HODOGRAPH CUBICS

  • Lee, Hyun Chol;Lee, Sunhong
    • East Asian mathematical journal
    • /
    • v.29 no.1
    • /
    • pp.53-68
    • /
    • 2013
  • We solve the geometric Hermite interpolation problem with planar Pythagorean-hodograph cubics. For every Hermite data, we determine the exact number of the geometric Hermite interpolants and represent the interpolants explicitly. We also present a simple criterion for determining whether the interpolants have a loop or not.

SKEW-ADJOINT INTERPOLATION ON Ax-y IN $ALG\mathcal{L}$

  • Jo, Young-Soo;Kang, Joo-Ho
    • The Pure and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.29-36
    • /
    • 2004
  • Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx=y. In this paper the following is proved: Let $\cal{L}$ be a subspace lattice on a Hilbert space $\cal{H}$. Let x and y be vectors in $\cal{H}$ and let $P_x$, be the projection onto sp(x). If $P_xE=EP_x$ for each $ E \in \cal{L}$ then the following are equivalent. (1) There exists an operator A in Alg(equation omitted) such that Ax=y, Af = 0 for all f in ($sp(x)^\perp$) and $A=-A^\ast$. (2) (equation omitted)

  • PDF