• Title/Summary/Keyword: invertase activity

Search Result 96, Processing Time 0.031 seconds

Effect of Plant Hormones on the Invertase Activity in the Senescing Leaves of Phaseolus radiatus

  • Lee, Dong-Hee;Lee, Chin-Bum;Kim, Young-Sang
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.2 no.1
    • /
    • pp.37-48
    • /
    • 1998
  • Effect of plant hormones on the leaf senescence of mung bean (Phaseolus radiatus) was investigated by measuring the changes of reducing sugar contents and invertase isozyme activities in detached leaves treated with NAA, $GA_3$ or BA. During dark-induced senescence, reducing sugar contents in the detached leaves increased temporarily at 4 d, thereafter decreased rapidly and reached minimum values within 7-14 d. The pattern of soluble acid invertase activity in the senescing leaves kept in the dark was similar to that of reducing sugar accumulation, whereas the activities of alkaline and extracellular invertases were not significantly changed during leaf senescence. Therefore, these results suggest that soluble acid invertase, but not alkaline and extracellular invertases, induces the accumulation of reducing sugar during leaf senescence of mung bean plants. Exogenous NAA application had little or no effect in the increase of soluble acid invertase activity during dark-induced senescence compared to the control. However, exogenous applications of $GA_3$ and BA led to the increase of soluble acid invertase activity in the senescing leaves. Particularly, BA application was very effective in enhancing the activity of soluble acid invertase as well as in delaying chlorophyll breakdown during dark-induced senescence. These results suggest, therefore, that BA regulates the activity of soluble acid invertase, which leads to the accumulation of reducing sugar, and the stability of photosynthetic apparatus to delay leaf senescence.

  • PDF

Effect of Plant Hormones on the Invertase Activity in the Senescing Leaves of Phaseoius radiatus

  • Dong Hee Lee;Chi
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.37-48
    • /
    • 1993
  • Effect of plant hormones on the leaf senescence of mung bean (Phseoln radiatus) was investigated by measuring the changes of reducing sugar contents and invertase isozyme activities in detached leaves treated with NAA, $GA_3$ or BA. During dark-induced senescence, reducing sugar contents in the detached leaves increased temporarily at 4 6, thereafter decreased rapidly and reached minimum values within 7-14 6. The pattern of soluble acid invertase activity in the senescing leaves kept in the dark was similar to that of reducing sugar accumulation, whereas the activities of alkaline and extracellular invertases were not significantly changed during leaf senescence. Therefore, these results suggest that soluble acid invertase, but not alkaline and extracellular invertases, induces the accumulation of reducing sugar during leaf senescence of Rung bean plants. Exogenous NAA application had little or no effect In the increase of soluble acid invertase activity during dark-induced senescence compared to the control. However, exogenous applications of $GA_3$ and BA led to the increase of soluble acid invertase activity in the senescing leaves. Particularly, BA application was very effective In enhancing the activity of soluble acid invertase as well as in delaying chlorophyll breakdown during dark-induced senescence. These results suggest, therefore, that BA regulates the activity of soluble acid invertase, which leads to the accumulation of reducing sugar, and the stability of photosynthetic apparatus to delay leaf senescence.

  • PDF

Effect of Growth Retardants on Growth and Invertase Activity of Sedirea japonica Seedlings in vitro (생장억제제 처리가 나도풍란(Sedirea japonica) 유묘의 생장과 invertase 활성에 미치는 영향)

  • Jee Sun Ok;Cho Dong Hoon
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.499-504
    • /
    • 2005
  • This experiment was conducted to identify the effect of several plant growth retardants on growth of Sedirea japonica seedlings cultured in vitro and their changes of invertase activities. When seedlings of Sedirea japonica were treated with ancymidol and paclobutrazol, as the concentrations were increased, leaf length was gradually shortened and leaf width became wider than that of control. On the other hand, root length was shorter, but the number of root and the root's diameters were greatly increased, compared with control. In 0.05mg/L uniconazole, growth of leaf and root were enhanced, compared with the control and higher concentrations of uniconazole. As concentration of each growth retardants was increased, leaf shape became round and smaller. Both soluble acid invertase activity and soluble alkaline invertase activity in leaf were decreased in higher concentrations of each growth retardant, but those of the root were contrary to those of the leaf. To confirm the estimated invertase activities, starch content of leaf was higher in low concentration treatments in each growth retardant, but in the root was contrary to content that of the leaf.

Studies on Invertase from Korean Ginseng, Panax ginseng C. A. Meyer - I. Separation and Properties of Crude Invertase - (고려 인삼 중의 Invertase에 관한 연구 - 제 1 보 : 조(粗) Invertase의 분리와 성질 -)

  • Kim, Byung-Mook
    • Korean Journal of Food Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.1-5
    • /
    • 1980
  • Crude invertase was obtained from the water extracts of Korean ginseng, Panax ginseng C. A. Meyer, by fractionation with $0.8{\sim}1.0$ saturation of ammonium sulfate. The properties of the crude invertase were as follows: Crude invertase was stable in the pH range between 5 and 9, and at the temperature below $35^{\circ}C$. Crude invertase showed the optimum pH at 5.0 and the optimum temperature at $50^{\circ}C$. The activity of the crude invertase was inhibited by $Ag^{+}\;Mn^{+}\;Hg^{+}\;Zn^{+},\;and\;Rb^{+}$, while $Ca^{+}\;Cu^{+},\;and\;Fe^{3+}$ demonstrated remarkable increasing effects on the enzyme activity.

  • PDF

Effects of Sucrose on Invertase Expression in Recombinant Saccharornyces cerevisiae (재조합 Saccharomyces cerevisiae에서 Invertase의 발현에 대한 Sucrose의 영향)

  • 임형권;김기홍;서진호
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.4
    • /
    • pp.417-421
    • /
    • 1992
  • The expression pattern of the cloned SUC2 gene in recombinant Saccharomyces cerevisiae was investigated in a two-stage culture. The recombinant yeast grown in a glucose medium where the SUC2 gene was repressed was harvested and then resuspended in a sucrose medium to induce invertase expression. The maximum activity of 10 units was obtained in a medium containing 2 $g/\ell$ sucrose as a carbon source at $30^{\circ}C$ . The oscillatory behavior of invertase activity in response to glucose concentrations in the second stage was observed. This effect can be attributed to a series of events: invertase expression from the SUC2 gene. sucrose hydrolysis to glucose and fructose by invertase, SUC2 repression by high glucose concentration, invertase induction as a result of depletion of glucose used for the yeast growth. The invertase activity was increased by 72.5% when growth temperature changed from $30^{\circ}C$: to $35^{\circ}C$.

  • PDF

Effect of Amino Acids and Dissolved Oxygen on Expression of Invertase in Recombinant Saccharomyces cerevisiae (재조합 Saccharomyces cerevisiae의 Invertase 발현에 미치는 아미노산과 용존산소의 영향)

  • 신해헌;조정섭;변유량;박혜영
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.3
    • /
    • pp.348-354
    • /
    • 1992
  • In order to improve the productivity of invertase by recombinant Saccharomyces cerevisiae containing SUC2 gene, the effect of amino acids and dissolved oxygen concentration on the gene expression was investigated. Optimal concentrations of leucine and histidine for cell growth and cloned gene expression were 0.03 gig and 0.04 gig, respectively, expressed as the ratio of amino acid/glucose. The lack or excess of leucine and histidine has inhibitory effect on cell growth and invertase expression. In batch culture, the less aeration was, the higher invertase activity was. In continuous culture at a dilution rate of 0.09 h 1 with controlled dissolved oxygen tension, invertase activity increased dramatically at DOT levels below 5% air saturation, and a maximum activity of 215.54 KUlg cell was obtained under unaerated condition.

  • PDF

Purification and Characterization of an Invertase Produced with Saccharomyces cerevisiae JS59 Isolated from Home-made Wine (포도주에서 분리한 Saccharomyces cerevisiae JS59가 생성하는 Invertase의 정제 및 특성)

  • Yoo, Ji-Soo;Paik, Hyun-Dong;Kim, Soo-Young;Lee, Si-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.9
    • /
    • pp.1321-1327
    • /
    • 2011
  • The microorganism producing an invertase (E.C. 3.2.1.26) was isolated from wine and tentatively identified as Saccharomyces cerevisiae by cellular fatty acid analysis. The invertase was purified to homogeneity by ammonium sulfate precipitant, dialysis, ion-exchange chromatography on DEAE-Sephadex A-50, and gel chromatography on Sephadex G-200 from the culture supernatant of Saccharomyces cerevisiae JS59. The specific activity and the purification fold of the purified invertase were 7620.9 unit/mg protein and 13.9, respectively. The molecular weight of the purified invertase was estimated to be 38.5 kDa by SDS-PAGE. The optimum pH and temperature for the invertase activity were pH 5 and $55^{\circ}C$, respectively. The invertase activity was relatively stable at pH 4~6 and temperature $55^{\circ}C$. The activity of invertase was inhibited by $Ag^{2+}$ and $Hg^{2+}$, but on the contrary, activated by $Co^{2+}$ and $Mn^{2+}$. Michaelis constant ($K_m$) for invertase reaction in sucrose solution was 11.5 mM. TLC analysis of the products produced in sucrose solution during invertase reaction showed the progressive presence of glucose and fructose in accordance with sucrose hydrolysis.

Microenvironmental Optimizaton of Immobilized Invertase for Methyl- $\beta$ -D-Fructofuranoside Synthesis (Methyl- $\beta$ -D-Fructofuranoside 합성을 위한 고정화 전화당 효소의 미소환경 최적화)

  • 허주형;안형환
    • Journal of the Korea Safety Management & Science
    • /
    • v.1 no.1
    • /
    • pp.259-272
    • /
    • 1999
  • In order to enhance the selectivity, productivity and yield of methyl fructoside, which was synthesized by enzymatic glycosylation of sucrose and methanol solution, controlling of surface property of solid support using different immobilization procedures optimized microenvironment of immobilized invertase. Silanization and polyethylene imine coating methods were adopted to give a hydrophobic and hydrophilic environment of immobilized invertase. As a result, polyethyleneimine coating method gave higher loading of enzyme, effective activity, and relative activity than silanization method, because it brought on increasing the functional density of amino group and enhancing the conservation of activity by regulating of hydrophilicity. And then, hydrophilic environment was possible to restraint the assessing of methyl fructoside molecule, which was more hydrophobic than sucrose, fructose, and glucose molecule in the reaction mixture, into .the active site of immobilizedinvertase. Consequently, hydrophilic microenvironment of immobilized invertase by polyethyleneimine coating obtained higher yield and productivity with increasing conversion than silanized and native invertase. Thus, this procedure optimized the microenvironment of immobilized invertase suitable for the enzymatic synthesis of methyl fructoside.

  • PDF

The Comparison of the Characteristics of Partially Purified Internal Invertase by Mating Type in the Heterobasidiomycetous Yeast (이담자 효모균의 성접합형에 따른 세포내 Invertase의 성질 비교)

  • 정영기;김병우
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.6
    • /
    • pp.625-629
    • /
    • 1992
  • This work was carried out to study physiological characteristics of Rhodosporidium toru[oides cells having two different mating types. The mating type A produces internal. cell wall-bound, and external invertases while type a produces only two invertases except external invertase. Comparing their characteristics after partial purification of internal invertases from both mating type cells, invertase from type a has decreased 15% of invertase activity only by $Mn^{2+}$ I while invertase from type A has been increased 11% of invertase activity by $Zn^{2+}$ and decreased 15% of invertase activity by $Mn^{2+}$ On the effect of enzyme inhibitor, invertase of type a was inhibited from 12% to 57% by 2-mercaptoethanol, sodium dodecyl sulfate, phenol. but invertase of type A was slightly inhibited only by phenol. The thermal stability of both invertases has showed steep inactivation at above $80^{\circ}C$ and their optimal temperatures were similar at $60^{\circ}C$ . Invertase from type A showed stability only on condition of acid from pH 3 to 6 and its opimal pH was 5.0, while invertase from type a showed stability at the wide range of pH 3-10 and its optimal pH was 4.0. And the $K_m$ values of invertases from type A and type a were $2.5{\times}10^3$M and$3.4{\times}10^3$M, respectively.

  • PDF

Invertase Production by Fed-batch Fermentations of Recombinant Saccharomyces cerevisiae

  • Koo, Ja-Hyup;Kim, Sang-Yong;Park, Yong-Cheol;Han, Nam-Soo;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.3
    • /
    • pp.203-207
    • /
    • 1998
  • Fed-batch fermentations with different feeding media were carried out in order to increase the productivity of invertase expression using a recombinant Saccharomyces cerevisiae containing plasmid pRB58. Two batch cultures showed the expression of the SUC2 gene at a low concentration of glucose, suggesting that glucose concentration could be used as a control variable in a fed-batch operation mode. In the fed-batch culture by feeding the basal medium, cell mass and specific invertase activity did not increase much as compared with the simple batch culture. A series of fed-batch cultures revealed that the sucrose-supplemented medium increased cell mass whereas the enriched medium did specific invertase activity. To capitalize on the synergism of the sucrose-supplemented medium and the enriched medium, the sucrose-supplemented enriched medium was used as a feeding medium. The fed-batch culture using this medium resulted in a 2.4-fold increase in cell mass and a 1.9-fold enhancement in specific invertase activity compared with those of the batch culture. The increase in cell mass and specific invertase activity led to a marked increase in total invertase activity, 250U/ml, which was 6.3 times higher than that of the batch culture.

  • PDF