• Title/Summary/Keyword: ion exchange resin bag

Search Result 4, Processing Time 0.021 seconds

Soil nitrogen availability in a thinned Larix leptolepis plantation using ion exchange resin bags (이온교환수지봉지를 이용한 일본잎갈나무 간벌지의 질소 유효도 측정)

  • Son, Yo-Whan;Kim, Hyun-Seop
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.2
    • /
    • pp.188-190
    • /
    • 2000
  • We explored changes in soil nitrogen (N) availability in a thinned (control, light, moderate, and heavy thinning) Larix leptolepis plantation determined by using ion exchange resin bags. Nitrogen availability varied among measurement periods, however, total available N (ammonium plus nitrate) concentrations did not change significantly in the 1 year since thinning. We found higher N availability in summer and fall than in winter.

  • PDF

Nodule Phenology and Nitrogen Mineralization of Rhizosphere in Autumn-olive(Elaeagnus umbellata) Stand (보리수나무 군락의 근류계절학 및 근계의 질소무기화)

  • You, Young-Han;Kyung-Bum Kim;Chung-Sun An;Joon-Ho Kim;Seung-Dal Song
    • The Korean Journal of Ecology
    • /
    • v.18 no.4
    • /
    • pp.493-502
    • /
    • 1995
  • Nodulation phenology in relation to plant phenology, vertical distribution of nodul and root biomass in different soil, correlation between nodule and root size, and nitrogen mineralization around the rhizosphere by ion-exchange resin bag buried at 10 cm of soil were studied in Elaeagnus nmbellata (autumn-olive) stand, Korea. Nodulation appeared from spring to autumn and nodule phenology was coincided with the timing of root activity rather than that of foliation. Nodul size increased in proportion to the root size. In the sand dune with the lower root biomass, nodule appeared up to 80 cm deep in soil and the nodule biomass was 1,070 kg/ha, which was the highest value reported for several actinorhizal plants in the temperate regions. It is suggested that nodule distribution and production are mainly influenced by soil aeration among environmental factors. The higher ammonification or lower nitrification rate contrasted markedly with the earlier studies that reported lower ammonification or higher nitrification in actinorhizal plant soil. Nitrogen mineralization rate around the rhizosphere with root and nodule was characterized by higher nitrification rate than that in the control soil without root and nodule.

  • PDF

Characteristics of Soil CO2 Efflux in Even-aged Alder Compared to Korean Pine Plantations in Central Korea

  • Kim, Yong Suk;Yi, Myong Jong;Lee, Yoon Young;Son, Yowhan;Koike, Takayoshi
    • Journal of Forest and Environmental Science
    • /
    • v.28 no.4
    • /
    • pp.232-241
    • /
    • 2012
  • We investigated the relationship between vegetation type and soil carbon dynamics in even-aged alder (Alnus hirsuta) and Korean pine (Pinus koraiensis) plantations in central Korea. Both forests were located on the same soil parent material and occupied similar topographic positions. Soil $CO_2$ efflux in the two plantations was determined using a dynamic chamber method accompanied by measurements of soil moisture content and temperature. Mean soil temperature was similar in the two plantations, but mean soil water content was significantly higher in the alder plantation than in the pine plantation. In both plantations, seasonal patterns in soil $CO_2$ efflux exhibited pronounced variation that corresponded to soil temperature. Soil water content did not affect the seasonal variation in soil $CO_2$ efflux. However, in summer, when soil temperature was above $17^{\circ}C$, soil $CO_2$ efflux increased linearly with soil water content in the alder plantation. Estimated $Q_{10}$ was 3.3 for the alder plantation and 2.7 for the pine plantation. Mean soil respiration during the measurement period in the alder plantation was 0.43 g $CO_2\;m^{-2}\;h^{-1}$, which was 1.3 times higher than in the pine plantation (0.33 g $CO_2\;m^{-2}\;h^{-1}$). Higher soil $CO_2$ efflux in the alder plantation might be related to nitrogen availability, particularly the concentration of $NO_3{^-}$, which was measured using the ion-exchange resin bag method.

Relationship between Land-Use Change and Soil Carbon and Nitrogen (토지(土地) 이용(利用) 형태(形態)의 변화(變化)와 토양(土壤) 내(內) 탄소(炭素)와 질소(窒素의 관계(關係))

  • Son, Yowhan;Lee, Sook Hee
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.3
    • /
    • pp.242-248
    • /
    • 2001
  • Changes in land-use can affect soil organic matter content and fertility. We compared total soil carbon and nitrogen concentrations, soil respiration, and nitrogen availability under three land-use types in central Korea; conversion of old rice field to natural willow-maple (Salix-Acer) forest, conversion of old field to artificial Korean pine (Pines koraiensis) forest, and indigenous oak (Quercus spp.) forest. After 20 years of fallow the area of rice field conversion to forest had higher soil carbon and nitrogen concentrations in the soil depth of 0-10cm and 10-20cm than the areas of field conversion to Korean pine forest and indigenous forest. In general, soil carbon and nitrogen concentrations decreased with soil depth. Organic matter accumulation as a balance of input and decomposition seemed to be higher in the soil of previous rice field, and carbon and nitrogen accumulation was largely confined to the topsoil. Soil respiration rates were greatest at the area of rice field conversion to forest, and appeared to be related to soil carbon and soil moisture. Soil nitrogen availability measured by the ion exchange resin bag method differed significantly among land-use types; soil inorganic nitrogen ($NH_4{^+}+NO_3{^-}$) and ammonium availability were highest in the soil under indigenous oak forest followed by conversion of old field to artificial Korean pine forest and conversion of old field to natural willow-maple forest.

  • PDF