• Title/Summary/Keyword: ionic conductivity

Search Result 576, Processing Time 0.03 seconds

Ionic Conductivity by A Complex Admittance Method

  • Chy Hyung Kim;Eung Dong Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.6
    • /
    • pp.495-500
    • /
    • 1989
  • The ionic conductivity of polycrystalline, glass, and glass-ceramic silicates was measured using two-terminal AC method with blocking electrode over a frequency range of 100 Hz to 100 KHz in the temperature range of $200^{\circ}C$ to $320^{\circ}C$. Analysing the capacitance (C), susceptance (B), impedance (Z), and conductance (G) under the given conditions, an equivalent circuit containing temperature and frequency dependent component is proposed. Higher capacitance could be observed in the low frequency region and on the improved ionic migration conditions i.e., at higher temperature in a better ionic conductor. Also the electrode polarization built up at the electrode-specimen interface could be sorted out above 10 KHz. However, grain boundary contribution couldn't be extracted from the bulk resistance over the frequency range measured here.

Electrochemical Properties of Gel Polymer Electrolyte including Zinc Acetate Dihydrate for Zinc-Air Batteries (아연-공기 전지용 아세트산 아연 이수화물을 첨가한 고분자 전해질의 전기화학적 특성)

  • Hui Seo Kim;Dong Yun Lee;Yong Nam Jo
    • Korean Journal of Materials Research
    • /
    • v.33 no.12
    • /
    • pp.550-557
    • /
    • 2023
  • In zinc-air batteries, the gel polymer electrolyte (GPE) is an important factor for improving performance. The rigid physical properties of polyvinyl alcohol reduce ionic conductivity, which degrades the performance of the batteries. Zinc acetate is an effective additive that can increase ionic conductivity by weakening the bonding structure of polyvinyl alcohol. In this study, polymer electrolytes were prepared by mixing polyvinyl alcohol and zinc acetate dihydride. The material properties of the prepared polymer electrolytes were analyzed by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Also, Electrochemical impedance spectroscopy was used to calculate ionic conductivity. The electrolyte resistances of GPE, 0.2 GPE, 0.4 GPE, and 0.6 GPE were 0.394, 0.338, 0.290, and 0.213 Ω, respectively. In addition, 0.6 GPE delivered 0.023 S/cm high ionic conductivity. Among all of the polymer electrolytes tested, 0.6 GPE showed enhanced cycle life performance and the highest specific discharge capacity of 11.73 mAh/cm2 at 10 mA. These results verified that 0.6 GPE improves the performance of zinc-air batteries.

Preparation of Porous Separators for Zn Air Batteries through Phase Inversions of Polyetherimide-PVP Solutions (Polyetherimide-PVP 용액의 상전이를 통한 아연공기전지의 다공성 분리막 제조)

  • Cho, Yu Song;Kim, Young Kyoung;Koo, Ja-Kyung
    • Membrane Journal
    • /
    • v.24 no.3
    • /
    • pp.231-239
    • /
    • 2014
  • Polyetherimide (PEI) membranes for separators in Zn air batteries were prepared via phase inversion process from casting solution composed of PEI, n-methylpyrolidone (NMP), and polyvinylpurrolidone (PVP). Furthermore, Zn air batteries were fabricated with the separators. The effects of PEI content and PVP addition in the casting solution on the morphology, mechanical strength, ionic conductivity were investigated through SEM, stress-strain test and ac impedance test. The elelctrochemical performances of the batteries were evaluated through galvanostatic discharge analysis. The mechanical strength of the membrane increased with increasing PEI composition in the casting solution. Little effect of PVP addition into the solution on the mechanical strength of the membrane was investigated. The ionic conductivity value decreased with increasing PEI composition in the solution. With addition of PVP, ionic conductivity of membrane increased until 10 wt% to show the maximum value of 0.1 S/cm. In the higher range of PVP addition over 10%, the ionic conductivity decreased with increasing PVP addition. Ionic conductivity of separator strongly affected the capacity of Zn air battery, and the battery assembled with the separator which showed high ionic conductivity showed high capacity.

Ionic Liquids Containing 1,1-Dicyano-1-acetylmethanide Anion as Potential Electrolytes

  • Winoto, Haryo Pandu;Agarwal, Shalu;Im, Jin-Kyu;Cheong, Min-Serk;Lee, Je-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2999-3003
    • /
    • 2012
  • Various types of room temperature ionic liquids (RTILs) containing 1,1-dicyano-1-acetylmethanide anion ($[C(CN)_2(COCH_3)]^-$, $[DCNAcC]^-$) were prepared and their physical and electrochemical properties were studied. All of these ILs exhibited high thermal stabilities over $200^{\circ}C$ and relatively high ionic conductivities up to 29.4 $mS\;cm^{-1}$ at $80^{\circ}C$. Although the ionic conductivity of IL containing bis(trifluoromethanesulfonyl)-imide ($[Tf_2N]^-$) anion is higher than that of ILs bearing $[DCNAcC]^-$ anion, the specific capacitance of ILs bearing $[DCNAcC]^-$ anion are higher than that of IL containing $[Tf_2N]^-$ anion and showed high temperature dependence. Such favorable electrochemical properties of these ILs are likely to be attributed to the efficient dissociation of cation and anion at higher temperature and enhanced electrosorption of $[DCNAcC]^-$ anion at the electrode.

Effect of Modifiers on the Electrical Resistivity of $SiO_2-Al_2O_3-B_2O_3-RO-Na_2O$ Glasses ($SiO_2-Al_2O_3-B_2O_3-RO-Na_2O$계 유리의 전지저항에 미치는 수식체의 영향)

  • 김대기;김철영
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.4
    • /
    • pp.385-390
    • /
    • 1996
  • The electrical resistivity of the ceramic glaze coated on ceramic substrate plays an important role on the characteristics of the thick and thin film electrical circuits. In this study the effects of the various modifiers on the electrical resistivity were examined in SiO2-Al2O3-B2O3-RO-Na2O (RO=CaO , SrO, BaO, PbO) glass system. In alkali free glasses where divalent cations are responsible for electrical conduction the electrical conductivity of th glasses increased with the ionic size of divalent cations due to the decrease in the bond strength between oxyben and divalent cation. In Na2O containing glasses however where Na+ ion is responsible for electrical conduction the ionic conductivity decreased with the ionic size of divalent cations because the blocking effect of the cations on Na+ ion movement increased with larger divalent cations. Na+ ionic conduction also depended on the glass structure relaxation due to the corrdination number changes of B2O3 and Al2O3 which varied with the NaO2 content in the glass.

  • PDF

Synthesis And Ionic Conductivity of Siloxane Based Polymer Electrolytes with Propyl Butyrate Pendant Groups

  • Jalagonia, Natia;Tatrishvili, Tamara;Markarashvili, Eliza;Aneli, Jimsher;Grazulevicius, Jouzas Vidas;Mukbaniani, Omar
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.36-43
    • /
    • 2016
  • Hydrosilylation reactions of 2.4.6.8-tetrahydro-2.4.6.8-tetramethylcyclotetrasiloxane with allyl butyrate catalyzed by Karstedt's, $H_2PtCl_6$ and Pt/C catalyst were studied and 2.4.6.8-tetra (propyl butyrate)-2.4.6.8-tetramethylcyclotetrasiloxane was obtained. The reaction order, activation energies and rate constants were determined. Ringopening polymerization of 2.4.6.8-tetra (propyl butyrate)-2.4.6.8-tetramethylcyclotetrasiloxane in the presence of $CaF_2$, LiF, KF and anhydrous potassium hydroxide in $60-70^{\circ}C$ temperature range was carried out and methylsiloxane oligomers with regular arrangement of propyl butyrate pendant groups were obtained. The synthesized products were studied by FTIR and NMR spectroscopy. The polysiloxanes were characterized by wide-angle X-ray, gel-permeation chromatography and DSC analyses. Via sol-gel processes of oligomers doped with lithium trifluoromethylsulfonate or lithium bis (trifluoromethylsulfonyl)imide, solid polymer electrolyte membranes were obtained. The dependences of ionic conductivity of obtained polyelectrolytes on temperature and salt concentration were investigated, and it was shown that electric conductivity of the polymer electrolyte membranes at room temperature changed in the range $3.5{\times}10^{-4}{\sim}6.4{\times}10^{-7}S/cm$.

Phase Transition and ionic Conductivity of Cesium Hydrogen Sulfate-PAN Composites (황산수소 세슘-PAN 복합체의 상전이와 이온 전도성)

  • 최병구;박상희
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.149-153
    • /
    • 2004
  • The cesium hydrogen sulfate (CsHSO$_4$) crystal is a superprotonic conductor above 140$^{\circ}C$ and possesses protonic conductivity three to low orders of magnitude higher than that at room temperature. Recently, the possibility of it as an electrolyte material for fuel cell system draws much attention. However, its plasticity and absorption of humidity place a limitation on its application. In this study, composites consisting of CsHSO$_4$ and polyacrylonitrile were prepared, and their phase transition properties and the ionic conductivities were evaluated. When the content of CsHSO$_4$ was about 80 vol%, a mechanically strong film with the protonic conductivity of 1${\times}$10$\^$-3/ Scm$\^$-1/ were made.

Effects of Sintering Conditions on the Electrical Conductivity of 1 wt% Y2O3-Doped AlN Ceramics (1 wt% Y2O3 첨가계 AlN 세라믹스의 소결 조건에 따른 전기전도도)

  • Lee, Won-Jin;Lee, Sung-Min;Shim, Kwang-Bo;Kim, Hyung-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.2 s.297
    • /
    • pp.116-123
    • /
    • 2007
  • Electrical properties of AlN ceramics sintered with 1 wt% $Y_2O_3$ have been investigated. From the impedance spectroscopy, electrical conductivity of grain boundary was found to be much lower than that of grain. DC conductivity measurement showed the electrode polarization effects caused by blocking electrode. The heat-treatment at $1700^{\circ}C$ of the specimen sintered at $1850^{\circ}C$ transformed continuous pain boundary phases along triple boundary junctions into isolated particles in grain comers. The heat-treatment induced decreases both in grain and grain boundary conductivity, and in DC electrical conductivities. From the analysis on the transference number, ionic conductivity was shown to be more dominant than electron conductivity, which was due to ion compensation mechanism during oxygen incorporation into grain.

Connectivity and Electrical Conductivity of YSZ-NiO Composite

  • Park, Young-Min;Park, Gyeong-Man
    • The Korean Journal of Ceramics
    • /
    • v.4 no.2
    • /
    • pp.141-145
    • /
    • 1998
  • The electrical properties of the mixed conducting yttria(8 mol%) stabilized zirconia(YSZ)-nickel oxide(NiO) composites were examined by a.c. impedance, 4-probe d.c. conductivity between 400 and $1000^{\circ}C$. The oxygen partial pressure dependence of conductivity, and electromotive force measurement of galvanic cell enabled to determine the electronic contribution to the conduction. Up to 6 vol% NiO addition, the conductivity decreased since the electronic NiO acted as an insulator in ionic matrix. However the ionic transport was dominant until NiO content reaches 26 vol%. Mixed conduction was observed between 26 and 68 vol% of NiO. The effect of composition on the electrical property was explained by the microstructure and thus by the distribution of two phases.

  • PDF

DESIGN OF ION CONDUCTIVE POLYMERS BASED ON IONIC LIQUIDS

  • Ohno, Hiroyuki
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.123-124
    • /
    • 2006
  • Ionic liquids (ILs) are collecting keen interests as an advanced substituent of electrolyte solution as well as novel solvents. In the present talk, I will introduce some strategies to fix IL structure on polymer chains to prepare polar polymers with low glass transition temperature. Namely, cationic, anionic, and zwitterionic monomers have been prepared, and they have been homopolymerized or copolymerized to prepare polymer electrolytes with different properties. The polymers themselves showed very poor ionic conductivity, but it was improved by suitable spacer between charged site and main chain. Other unique characteristics of functional ILs and new polymerized ionic liquids will also be mentioned.

  • PDF