• 제목/요약/키워드: iridium catalyst

검색결과 20건 처리시간 0.024초

Selective Growth of the Carbon Nanofibers at the Groove Area of the MgO Substrate by the Iridium Catalyst

  • Kim, Sung-Hoon
    • 한국세라믹학회지
    • /
    • 제41권12호
    • /
    • pp.880-883
    • /
    • 2004
  • Carbon nanofibers could be selectively formed at the groove area of the MgO substrate using microwave plasma-enhanced chemical vapor deposition system. Iridium metal was used as a catalyst layer for the formation of the carbon nanofibers. The growth direction of the carbon nanofibers was vertical to the substrate surface. The selectively grown iridium-catalyzed carbon nanofibers show around $1.8V/{\mu}m$ turn-on voltage and $1.0\;mA/cm^2$ field emission current density at $2.65\;V/{\mu}m$ in the field emission measurement.

Bridge-type formation of iridium-catalyzed carbon nanofibers across the Gap on MgO substrate and their electrical properties

  • Kim, Kwang-Duk;Kim, Sung-Hoon;Kim, Nam-Seok
    • 한국결정성장학회지
    • /
    • 제16권5호
    • /
    • pp.198-202
    • /
    • 2006
  • We could achieve the bridge-type formation of the iridium-catalyzed carbon nanofibers across the gap on the MgO substrate using microwave plasma enhanced chemical vapor deposition method. On the plane surface area of the MgO substrate, the iridium-catalyzed carbon nanofibers were grown as a lateral direction to the substrate. The bridge-type formation and/or the lateral growth of the iridium-catalyzed carbon nanofibers were interconnected with each other. Finally, they could form an entangled network having the bridge-type formation of the carbon nanofibers across the gap on the substrate and the laterally-grown carbon nanofibers on the plane surface area of the substrate. The entangled network showed the semiconductor electrical characteristics.

Different Growth Position of Iridium-catalyzed Carbon Nanofibers on the Substrate According to the Value of the Applied Bias Voltage

  • Kim, Sung-Hoon
    • 한국재료학회지
    • /
    • 제16권1호
    • /
    • pp.25-29
    • /
    • 2006
  • Vertical growth of iridium-catalyzed carbon nanofibers could be selectively grown on the MgO substrate using microwave plasma-enhanced chemical vapor deposition method. Growth positions of the iridium-catalyzed carbon nanofibers on the MgO substrate could be manipulated according to the applied bias voltage. At-150 V, the carbon nanofibers growth was confined only at the corner area of the substrate. Based on these results, we discussed the cause for the confinement of the vertically grown carbon nanofibers on the specific area of the MgO substrate as a function of the applied bias voltage.

전기화학적 활성과 내구성이 높은 Ti/IrO2/Ta2O5 전극 제조 (Fabrication of Ti/IrO2/Ta2O5 Electrode with High Electrochemical Activity and Long Lifetime)

  • 김다은;유재민;이용호;박대원
    • 한국물환경학회지
    • /
    • 제33권1호
    • /
    • pp.34-39
    • /
    • 2017
  • Under a corrosive environment, electrodes that are applied in the water-treatment system need not only very high electrochemical activity for fast reactions, but also high durability for cost saving. Therefore, the fabrication condition of iridium electrodes was examined to produce a more durable iridium electrode in this study. Tantalum was selected as a binder to enhance the durability of the iridium electrode. Investigation of the weight ratio between the catalyst and the binder to improve electrochemical activity was performed. Also, to compare the effect of the different coating amounts of the catalyst, the results of CV (Cyclic Voltammetry) and EIS (Electrochemical Impedance Spectroscopy) were discussed. Furthermore, an ALT(Accelerated Lifetime Test) was designed and applied to the electrodes to determine the conditions for highly durable electrode fabrication.

Development Status of Iridium Catalyst for Hydrazine Decomposition

  • Kim, S.K.;Lee, K.H.;Yu, M.J.;Cho, S.J.;Lee, J.W.
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.272-274
    • /
    • 2008
  • A development of hydrazine decomposition catalyst for monopropellant thruster has been performed by Korea Aerospace Research Institute(KARI). The goal of this development is to product a catalyst showing the equivalent performance with space-proven catalysts. Catalyst production and physical/chemical analysis were conducted by Chonnam National University and the analysis result was compared with the result of other catalysts and our own specification. Using the developed prototype catalyst, short firing test was performed in a reactor to verify basic performance of catalyst. After the successful reactor test, hot firing tests were carried out in atmospheric and vacuum condition using 5N thruster to verify durability and safety of catalyst. In this paper, the catalyst development status will be presented.

  • PDF

위성추력기에서 촉매유실에 따른 암모니아 해리도 변화에 대한 연구 (Investigation on the Change of Ammonia Dissociation for Satellite Thruster According to the Catalyst Loss)

  • 황창환;이성남;백승욱;김수겸;유명종
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.218-222
    • /
    • 2011
  • 이리듐 촉매의 국산화 개발과정에서 고온/고압으로 인한 촉매파손, 유실, 소결현상 등이 관찰되었고, 이렇게 손상된 촉매대로 인하여 추력기의 성능이 저하된다고 보고되었다. 이에 본 논문의 연구에서는 촉매대를 1차원 다공질성 매질로 가정, 모델링하여 수치해석코드를 개발하였다. 개발된 수치해석코드는 실험데이터와 비교하여 검증하였으며, 촉매유실에 의해 변하게 되는 촉매대의 공극률을 변화시켜 다양한 경우의 촉매유실을 가정하여 해석을 수행하였다. 이를 통하여 촉매유실이 하이드라진과 암모니아의 분해반응에 끼치는 영향을 연구하였다.

  • PDF

단일추진제용 이리듐촉매의 연소성능 측정 및 국내개발 현황 (Hot Firing Performance Measurement of Monopropellant Decomposition Catalyst and Domestic Development Status)

  • 이균호;유명종;김수겸;장기원;조성준
    • 한국추진공학회지
    • /
    • 제10권3호
    • /
    • pp.109-117
    • /
    • 2006
  • 인공위성 및 발사체의 자세제어용으로 사용되는 단일추진제 추력기용 하이드라진의 분해촉매에 대한 연소성능을 실제 지상연소시험을 통하여 검증하였다. 촉매연소성능을 확인하기 위한 촉매 시험장치를 (주)한화와 공동으로 설계/제작하였으며, 이를 통하여 하이드라진 분해촉매의 촉매 연소특성을 시험하였다. 연소지연시간, 촉매활성도, 촉매안정도를 2회에 걸쳐 측정한 결과 각각 평균 25msec, 2%, $704^{\circ}C$으로 만족할 만한 결과를 얻었다. 또한 현재 진행 중인 국산화 촉매 시제품의 개발현황과 분해성능 시험 결과를 설명하였다.

Syntheses and Reactions of Iridium Complexes Containing Mixed Phosphine-Olefin Ligand: (3-(Diphenylphosphino)propyl)(3-butenyl)phenylphosphine

  • Young-ae W. Park;Devon W. Meek
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권6호
    • /
    • pp.524-528
    • /
    • 1995
  • The reaction of [IrCl(cod)]2 with ppol ligand, Ph2PCH2CH2CH2P(Ph)CH2CH2CH=CH2, in ethanol gives an iridium complex, whose structure is converted from an ionic form, [Ir(cod)(ppol)]Cl·2C2H5OH (1),in polar solvents (ethanol, methanol and acetonitrile), to a molecular form, [IrCl(cod)(ppol)], in non-polar solvents (benzene and toluene). The cationic complexes, [Ir(cod)(ppol)]AsF6·1/2C2H5OH and [Ir(cod)(ppol)]PF6·1/2CH3CN, were prepared to compare with the ionic form by 31P NMR spectroscopy. When carbon monoxide is introduced to 1, cod is replaced by CO to give the 5-coordinated complex, [IrCl(CO)(ppol)]. Hydrogenation of 1-octene was not successful in the presence of 1. In order to verify the reason for 1 not behaving as a good catalyst for hydrogenation, electrophilic reactions with HCl, I2 and HBF4·etherate were performed, which yielded the oxidative addition product, [IrHCl2(ppol)], the substitution product, [IrI(cod)(ppol)], and another cationic product, [Ir(cod)(ppol)]BF4, respectively. Thus, the iridium complex is not sufficiently basic to activate hydrogen atoms or the olefin of the ppol ligand.

수전해용 Ir/TiO2 산소 발생 촉매의 제조 및 성능 평가 (Synthesis and Evaluation of Ir/TiO2 OER catalyst for PEM water electrolysis)

  • 송민아;정혜영;이해지;최윤기;문상봉
    • 한국수소및신에너지학회논문집
    • /
    • 제27권5호
    • /
    • pp.471-477
    • /
    • 2016
  • In this research, the Ir supported $TiO_2$ (P25) catalyst was prepared by precipitation method for oxygen evolution reaction. The $Ir/TiO_2$ catalyst was synthesised by reduction reaction using reducing agent. Physiochemical characterizations of synthesized $Ir/TiO_2$ catalyst was studied by means of SEM, EDS mapping, TEM and XRD. The Electrochemical characterizations were tested by using the technique of CV and LSV by RDE and Potentiostat. Physicochemical properties were characterized with XRD where Iridium metal morphology and Ir(111) and Ir(222) peaks were founded. $Ir0.2Ru0.8O_2$ exhibited higher OER activity than $Ir0.5Ru0.5O_2$ followed by $Ir/TiO_2$ and $IrO_2$.

단일추진제 위성추력기 내 연소기 및 노즐 유동 해석 (Analysis of Combustor and Nozzle for Monopropellant Satellite Thruster)

  • 이성남;백승욱;김수겸;유명종
    • 한국연소학회지
    • /
    • 제15권2호
    • /
    • pp.12-18
    • /
    • 2010
  • A numerical analysis was performed to predict the thermo-fluid dynamic characteristics of hydrazine monopropellant reaction in the thruster combustor and nozzle. A 1-D porous model was introduced to simulate catalytic reaction by iridium in the combustor while 2-D axisymmetric analysis was applied to predict the nozzle flow. The chemical species and temperature variations were predicted by changing the injection pressure and mass flow rate and their results were validated by comparison with limited experimental data. The thrust variation with injection pressure could be estimated using the current 1-D combustor modeling.