• Title/Summary/Keyword: irradiation graft

Search Result 83, Processing Time 0.025 seconds

Preparation of Alginate/Poly(N-isopropylacrylamide) Hydrogels Using Gamma-ray Irradiation Grafting

  • Lee, Young-Moo;Lee, Sang-Bong;Seo, Sung-Mi;Lim, Youn-Mook;Cho, Seong-Kwan;Nho, Young-Chang
    • Macromolecular Research
    • /
    • v.12 no.3
    • /
    • pp.269-275
    • /
    • 2004
  • To graft N-isopropylacrylamide (NIPAAm) onto alginate, varying dosages of ${\gamma}$-rays were irradiated onto alginate films in deionized water and methanol media, which are non-solvents of alginate. We investigated the hydrogels graft ratio, mechanical strength, swelling kinetics and ratio, and behavior with respect to drug release. The graft yield of NIPAAm increased upon increasing the irradiation dose. The use of the aqueous solution increased the graft yield relative to that obtained in methanol. The mechanical strength of the grafted hydrogels increased after grafting with NIPAAm. In a study of the swelling kinetics, we found that all hydrogels reached an equilibrium swollen state within 3 h. The equilibrium swelling ratio of the hydrogels decreased upon increasing the irradiation dose. The swelling ratio of the hydrogels decreased dramatically between 30 and 35$^{\circ}C$ because phase separation of NIPAAm occurred at 32$^{\circ}C$. The swelling process, with respect to the temperature change, was repeatable. An NIPAAm-grafted alginate containing a drug sustained its release rate until 3 h after an initial high drug release caused by a burst effect.

Studies on the Graft Polymerization-Graft Polymerization of Styrene to Polyvinyl Alcohol by Ultraviolet Light (Graft 重合에 關한 硏究-紫外線 照射에 依한 Polyvinyl alcohol 과 Styrene 의 Graft 重合에 關하여)

  • Shim, Jyong-Sup;Jun, Kyong-Chul
    • Journal of the Korean Chemical Society
    • /
    • v.6 no.1
    • /
    • pp.64-68
    • /
    • 1962
  • The graft polymerization of styrene to polyvinyl alcohol using a photosensitizer(benzophenone) and ultraviolet light was studied. Styrene was grafted onto polyvinyl alcohol up to when polyvinyl alcohol was pre-immersed in water and irradiated by ultraviolet light for 24 hours styrene solution of benzophenone(0.01 molarity). The highest percentage of graft obtained in the grafting which was proceeded in the presence of water added immediately before irradiation was 29%. The grafting was proportional to irradiation time within a certain limit of time, i.e., 24 hours, and presumably was initiated at the surface. After a certain degree of grafting a definite maximum was reached. Graft polymer prepared in this experiment showed high resistance to various solvents.

  • PDF

Study on the Storage Stability of Xeno-Bone Graft Material by Irradiation (방사선 조사된 골수복제의 저장 안전성 평가)

  • Lee, Hak-Jyung;Kim, Jae-Hun;Kim, Tae-woon;Lee, Ju-Woon;Choi, Jong-il
    • Journal of Radiation Industry
    • /
    • v.4 no.4
    • /
    • pp.381-384
    • /
    • 2010
  • In this study, the microbial safety and mechanical properties of xeno-bone graft material irradiated were investigated during the storage. Xeno-bone graft of the deminerlized bone matrix in carboxy-methyl-cellulose was gamma-irradiated and was cultured in PCA and PDA agar to check microbial contamination. Total aerobic bacteria and fungi were not detected in the irradiated and non-irradiated sample stored in accelerator at $30^{\circ}C$ for 10 months. Viscosity of CMC treated gamma irradiation was also not changed by holding period.

Graft copolymerization of GMA and EDMA on PVDF to hydrophilic surface modification by electron beam irradiation

  • Lim, Seung Joo;Shin, In Hwan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.373-380
    • /
    • 2020
  • This study was carried out to convert the hydrophobic characteristics of PVDF to hydrophilic. Poly(-vinylidene fluorine) (PVDF) was grafted by electron beam irradiation and sulfonated. The grafting degree of modified PVDF increased with the monomer concentration, but not the conversion degree. From the results of FTIR and XPS, it was shown that the amount of converted sulfur increased with the grafting degree. The radiation-induced graft polymerization led to decrease fluorine from 35.7% to 21.3%. Meanwhile, the oxygen and sulfur content increased up to 8.1% and 3.2%. The pore size of modified membranes was shrunken and the roughness sharply decreased after irradiation. The ion exchange capacity and contact angle were investigated to show the characteristics of PVDF. The enhanced ion exchange capacity and lower contact angle of modified PVDF showed that the hydrophilicity played a role in determining membrane fouling. Electron beam irradiation successfully modified the hydrophobic characteristics of PVDF to hydrophilic.

UV-Induced Graft Polymerization of Polypropylene-g-glycidyl methacrylate Membrane in the Vapor Phase

  • Hwang, Taek-Sung;Park, Jin-Won
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.495-500
    • /
    • 2003
  • UV-induced graft polymerization of glycidyl methacrylate (GMA) to a polypropylene (PP) membrane was carried out in the vapor phase with benzophenone (BP) as a photoinitiator. Attenuated total reflection Fourier transform infrared spectroscopy, atomic force microscopy (AFM), and scanning electron microscopy (SEM) were utilized to characterize the copolymer. The degree of grafting increased with increasing reaction time, increased UV irradiation source intensity, and increased immersion concentration of the BP solution. The optimum synthetic condition for the PP-g-GMA membrane was obtained with a reaction time of 2 hrs, a UV irradiation source intensity of 450 W, and an immersion concentration of the BP solution of 0.5 mol/L. The pure water flux decreased upon increasing the degree of grafting and increasing the amount of diethylamino functional group introduced. The analysis of AFM and SEM images shows that the graft chains and diethylamino groups of PP-g-GMA grew on the PP membrane surface, resulting in a change in surface morphology.

Ultraviolet Photografting Reaction of Acrylamide onto Styrene-Butadiene Rubber (Styrene-Butadiene 고무의 아크릴아미드 UV 광그라프팅 반응)

  • Lee, K.I.;Ryu, S.H.
    • Elastomers and Composites
    • /
    • v.33 no.5
    • /
    • pp.363-369
    • /
    • 1998
  • Photografting reaction onto styrene-butadiene rubber (SBR) as a function of monomer concentration, irradiation time and carbon black content has been studied using ultraviolet (UV). Acrylamide and benzophenone are used as monomer and photoinitiator, respectively. FT-IR ATR and static contact angle analysis using distilled water are used to measure the graft ratio of acrylamide onto SBR surface. Graft ratio of acrylamide increases with acrylamide concentration and irradiation time and contact angle tends to decrease with increasing graft ratio. It is observed that graft ratio increases with carbon black content.

  • PDF

Effect of Storage Conditions on Graft of Polypropylene Non-woven Fabric Induced by Electron Beam (전자선 조사된 폴리프로필렌 부직포의 그라프트에 있어 보관조건이 미치는 영향)

  • Lee, Jin Young;Jeun, Joon-Pyo;Kang, Phil-Hyun
    • Journal of Radiation Industry
    • /
    • v.9 no.2
    • /
    • pp.57-62
    • /
    • 2015
  • In this study, we fabricated effect of storage conditions on graft of polypropylene (PP) non-woven fabric induced by electron beam. The electron beam irradiations on PP non-woven fabric were carried out over a range of irradiation doses from 25 to 100 kGy to make free radicals on fabric surface. The radical measurement was established by electron spin resonance (ESR) for confirming the changes of the alkyl radical and peroxy radical according to effect of storage time, storage temperature and atmosphere. It was observed that the free radicals were increased with irradiation dose and decreased with storage time due to the continuous oxidation. However, the radical extinction was significantly delayed due to reduced mobility of radicals at extremely low temperature. The degree of graft based on the analysis of ESR was investigated. The conditions of graft reaction were set at a temperature: $60^{\circ}C$, reaction time: 6 hours and styrene monomer concentration: 20 wt%.

Total lymphoid irradiation based conditioning for hematopoietic stem cell transplantation in severe aplastic anemia

  • Lee, Yun-Hee;Kim, Ji-Yoon;Choi, Byung-Ock;Ryu, Mi-Ryeong;Chung, Su-Mi
    • Radiation Oncology Journal
    • /
    • v.30 no.4
    • /
    • pp.165-172
    • /
    • 2012
  • Purpose: To retrospectively evaluate the outcome and toxicity of total lymphoid irradiation (TLI) based conditioning regimen for allogeneic hematopoietic stem cell transplantation (HSCT) in severe aplastic anemia (SAA) patients who experienced an engraftment failure from prior HSCT or were heavily transfused. Materials and Methods: Between 1995 and 2006, 20 SAA patients received TLI for conditioning of HSCT. All patients were multi-transfused or had long duration of disease. Fifteen (75%) patients had graft failure from prior HSCT. In 18 (90%) patients, the donors were human leukocyte antigen identical siblings. The stem cell source was the peripheral blood stem cell in 15 (75%) patients. The conditioning regimen was composed of antithymocyte globulin plus TLI with a median dose of 750 cGy in 1 fraction. The graft-versus-host disease (GVHD) prophylaxis used cyclosporine with methotrexate. Results: With a median follow-up of 10.8 years, graft failures developed in 6 patients. Among them, 3 patients received their third HSCT to be engrafted finally. The Kaplan-Meier overall survival rate was 85.0% and 83.1% at 5 and 10 years, respectively. The incidence of acute and chronic GVHD was 20% and 20%, respectively. None of the patients have developed a malignancy after HSCT. Conclusion: In our study, TLI based conditioning in allogeneic HSCT was feasible with acceptable rates of GVHD in SAA patients who experienced graft failure from prior HSCT or was at a high risk of graft rejection. We achieved relatively better results of engraftment and survival with a long term follow-up.

Stability in Immunomodulation Activity of Irradiated Angelica gigas Nakai (방사선 조사 당귀(Angelica gigas)의 면역활성 안정성)

  • 조성기;박혜란;유영법;송병철;이성태
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.1
    • /
    • pp.134-139
    • /
    • 2000
  • Angelica gigas Nakai (danggui) is a popular herb which has been used as a blood-building decoction for recovery from weakness in the Chinese medicine. Its demand increased in functional foods and pharmaceutical industries. For its hygiene, fumigation has been used, but the use of fumigants are going to be prohibited for food processing. In order to investigate gamma irradiation technique for hygiene of danggui, the immunomodulation activity of danggui after irradiation was examined. The water extract of irradiated danggui showed a strong mitogenic effect on splenocytes in vitro to the same level of lipopolysaccharide (LPS) and phytohemagglutinin (PHA). The effect was not different from that of non-danggui. It was tested whether there was any difference between irradiated and non-irradiated danggui in effects on the secretion of antibodies and graft versus host reaction in vivo. It turned out that intraperitoneal (i.p.) administration of the extract of irradiated danggui for 4 days remarkably increased the number of antibody-secreting cells in mice injected with sheep red blood cells (SRBC). Splenomegaly, due to graft versus host reacton, was also increased after 7 days i.p. administration of the extract of danggui in mice injected with allogeneic splenocytes. In these two in vivo test, the effect were not different from those of non-irradiated danggui. These results indicated that immunomodulation activity of danggui might be preserved after irradiation. In the other experiments (data not shown), the irradiated danggui was stable in active component analysis and safe in genetic toxicity test. In further research, the stability in other physiological activity of irradiated danggui will have to be proved before practical application of irradiation for hygiene.

  • PDF

Preparation and Characterization of Temperature-Sensitive Poly(N-isopropylacrylamide)-g-Poly(L-lactide-co-$\varepsilon$-caprolactone) Nanofibers

  • Jeong, Sung-In;Lee, Young-Moo;Lee, Joo-Hyeon;Shin, Young-Min;Shin, Heung-Soo;Lim, Youn-Mook;Nho, Young-Chang
    • Macromolecular Research
    • /
    • v.16 no.2
    • /
    • pp.139-148
    • /
    • 2008
  • Biodegradable and elastic poly(L-lactide-co-$\varepsilon$-caprolactone) (PLCL) was electrospun to prepare nanofibers, and N-isopropylacrylamide (NIPAAm) was then grafted onto their surfaces under aqueous conditions using $^{60}Co-{\gamma}$ irradiation. The graft yield increased with increasing irradiation dose from 5 to 10 kGy and the nanofibers showed a greater graft yield compared with the firms. SEM confirmed that the PLCL nanofibers maintained an interconnected pore structure after grafting with NIPAAm. However, overdoses of irradiation led to the excessive formation of homopolymer gels on the surface of thc PLCL nanofibers. The equilibrium swelling and deswelling ratio of the PNIPAAm-g-PLCL nanofibers (prepared with 10 kGy) was the highest among the samples, which was consistent with the graft yield results. The phase-separation characteristics of PNIPAAm in aqueous conditions conferred a unique temperature-responsive swelling behavior of PNIPAAm-g-PLCL nanofibers, showing the ability to absorb a large amount of water at < $32^{\circ}C$, and abrupt collapse when the temperature was increased to $40^{\circ}C$. In accordance with the temperature-dependent changes in swelling behavior, the release rate of indomethacin and FITC-BSA loaded in PNIPAAm-g-PLCL nanofibers by a diffusion-mediated process was regulated by the change in temperature. Both model drugs demonstrated greater release rate at $40^{\circ}C$ relative to that at $25^{\circ}C$. This approach of the temperature-controlled release of drugs from PNIPAAm-g-PLCL nanofibers using gamma-ray irradiation may be used to design drugs and protein delivery carriers in various biomedical applications.