• Title/Summary/Keyword: isomers

Search Result 553, Processing Time 0.03 seconds

Conformational Investigations of HMPAO Isomers and Their Zinc(II) Complexes

  • Ruangpornvisuti, Vithaya;Pulpoka, Buncha;Tuntulani, Thawatchai;Thipyapong, Khajadpai;Suksai, Chomchai
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.4
    • /
    • pp.555-562
    • /
    • 2002
  • Isomers based on the RS and EZ geometrical isomerism of the neutral, deprotonated species of HMPAO and their complexes with zinc(Ⅱ) ion have been investigated by semiempirical AM1 optimization method. The Hartree-Fock energies on AM1 geometries o f HMPAO species were calculated with HF/6-31G* methods. Twenty-two isomers of the neutral and twenty isomers of the deprotonated species of HMPAO have been found. The presence of four EE-series isomers of both zinc(Ⅱ) complexes with the neutral and deprotonated HMPAO have been expected and the SREE typical isomer of both types of complexes is the most stable isomer. Energies of complexation of zinc(Ⅱ)/HMPAO isomers with AM1 geometries were calculated by HF/ 6-31G*method. Due to the complexations with zinc(Ⅱ), the structural reorganizations of some isomers of the neutral HMPAO have been occurred. The optimized geometrical parameters of the related conformations have been discussed in terms of their stabilities and existences.

Full Geometry Optimizations of Bond-Stretch Isomers of C202+ Fullerene Dication by the Hybrid Density Functional B3LYP Methods

  • Lee, Ji-Hyun;Lee, Chang-Hoon;Park, Sung-S.;Lee, Kee-Hag
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.277-280
    • /
    • 2011
  • We studied the relative stability and atomic structure of five $C_{20}^{2+}$ isomers obtained by two-electron ionization of a $C_{20}$ cage (the smallest fullerene). All the isomers are bond-stretch isomers, i.e., they differ in bond length. In particular, in one of the isomers with Ih symmetry, all the bond lengths are equal. Full geometry optimizations of the dipositive ion $C_{20}^{2+}$ were performed using the hybrid density functional (B3LYP/6-31G(d)) methods. All isomers were found to be true minima by frequency analysis at the level of B3LYP/6-31G(d) under the reinforced tight convergence criterion and a pruned (99,590) grid. The zero-point correction energy for the cage bond-stretch isomers was in the increasing order $D_{2h}<C_{2h}<C_2<T_h<I_h$ of $C_{20}^{2+}$. The energy difference among the isomers of cage dipositive ions was less than that among neutral cage isomers. Our results suggest that these isomers show bond-stretch isomerism and that they have an identical spin state and an identical potential energy curve. Although the predominant electronic configurations of the isomers are similar, the frontier orbital characteristics are different, implying that we could anticipate an entirely different set of characteristic chemical reactions for each type of HOMO and LUMO.

Effect of Dietary CLA Isomers on Apoptosis and Cell Proliferation in Colonic Mucosa of DMH-Treated Rats (식이에 첨가한 CLA Isomer가 쥐에서 대장점막의 세포사멸과 세포증식에 미치는 영향)

  • 박현서;권필수;윤정한;하영래
    • Journal of Nutrition and Health
    • /
    • v.36 no.7
    • /
    • pp.661-666
    • /
    • 2003
  • The study was designed to compare the anti-carcinogenic effect of conjugated linoleic acid (CLA) isomers on colon carcinogenesis in 1,2-dimethylhydrazine (DMH)-treated rats by determining the levels of apoptosis, cell proliferation, eicosanoids and 1,2-diacylglycerol (DAG) in colonic mucosa. Sixty male Sprague Dawley rats were randomly divided into 3 groups depending on the types of CLA isomers, i.e. BT group (no CLA contained), CLA-C group (cis-9, trans11 isomer contained), and CLA- T group (trans-10, cis-12 isomer contained). The experimental diet was composed of protein at 20%, carbohydrate at 56.2%, and fat at 14.5% including 0.8% CLA isomers by weight. The experimental diet was fed for 14 weeks with the initiation of intramuscular injection of DMH, which was injected twice a week for 6 weeks to give total dose of l80mg per kg body weight. Two CLA isomers (c9t11 and t10c12) significantly increased the relative percentage of apoptosis but reduced cell proliferation in mucosal cell and also the levels of PGE$_2$, TXB$_2$, and DAG in colonic mucosa. However, there was no significant differences in anti-carcinogenic effect between c9t11 isomer and t10c12 isomer. Overall, colon carcinogenesis could be significantly inhibited by CLA isomers by increasing apoptosis and reducing cell proliferation, the levels of eicosanoids and DAG in colonic mucosa.

Effects of retinoic acid isomers on apoptosis and enzymatic antioxidant system in human breast cancer cells

  • Hong, Tae-Kyong;Lee-Kim, Yang-Cha
    • Nutrition Research and Practice
    • /
    • v.3 no.2
    • /
    • pp.77-83
    • /
    • 2009
  • Retinoic acids (RAs) modulate growth, differentiation, and apoptosis in normal, pre-malignant & malignant cells. In the present study, the effects of RA isomers (all-trans RA, 13-cis RA, and 9-cis RA) on the cell signal transduction of human breast cancer cells have been studied. The relationship between RAs and an enzymatic antioxidant system was also determined. Estrogen-receptor (ER) positive MCF-7 and ER-negative MDA-MB-231 human breast cancer cells were treated with different doses of each RA isomers, all-trans RA, 13-cis RA, or 9-cis RA. Treatment of RA isomers inhibited cell viability and induced apoptosis of MCF-7 cells as a result of increased caspase activity in cytoplasm and cytochrome C released from mitochondria. All-trans RA was the most effective RA isomer in both cell growth inhibition and induction of apoptosis in MCF-7 cells. However, no significant effect of RA isomers was observed on the cell growth or apoptosis in ER-negative MDA-MB-231 cells. In addition, activities of antioxidant enzymes such as catalase and glutathione peroxidase were decreased effectively after treatment of RA in MCF-7 cells, whereas SOD activity was rarely affected. Thus, the present data suggest that all-trans RA is the most potential inducer of apoptosis and modulator of antioxidant enzymes among RA isomers in MCF-7 human breast cancer cells.

Separation of Madecassoside and Madecassic Acid Isomers by High Performance Liquid Chromatography Using β -Cyclodextrin as Mobile Phase Additive

  • Kai, Guiqing;Pan, Jian;Yuan, Chuanxun;Yuan, Yuan
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.551-554
    • /
    • 2008
  • An improved HPLC method for the separation of madecassoside isomers (madecassoside and asiaticoside-B) has been developed. The isomers can be separated with high resolution from extracts of Centella asiatica by HPLC using $\beta$-cyclodextrin as a mobile phase added on a $C_{18}$ column. The result shows that the isomers can be separated with a mobile phase consisting of methanol:water (50:50, v/v) with 4 mmol/L $\beta$-CD. To elucidate the mechanism of the separation of madecassoside and asiaticoside-B, this paper studied the separation of their aglycon parts (madecassic acid and terminolic acid), another pair of isomers. The isomers can also be separated with high resolution with a mobile phase consisting of methanol:water (65:35, v/v) with 4 mmol/L $\beta$-CD and the pH of the mobile phase was adjusted to 4. The paper also studied the separation of the two isomers by HPLC using $\alpha$-CD and Glucosyl-$\beta$-CD as a mobile phase additive in order to elucidate the mechanism of the separation process.

The Effect of Conjugated Linoleic Acid Isomers on the Cell Proliferation, Apotosis and Expressions of Uncoupling Protein (Ucp) Genes during Differentiation of 3T3-L1 Preadipocytes (Conjugated Linoleic Acid 이성체가 3T3-L1 지방전구세포 분화중 세포증식, 세포사멸 및 Ucp 유전자 발현에 미치는 영향)

  • Kwon So-Young;Kang Keum-Jee
    • Journal of Nutrition and Health
    • /
    • v.37 no.7
    • /
    • pp.533-539
    • /
    • 2004
  • It has been reported that CLA decreases fat deposition in vivo and in vitro experiments. Among CLA isomers, c9t11 and t10c12 have been shown to exert active biological activities. For example, t10c12 reduces body weight and increases lean body mass, whereas, c9t11 has little effect on body fattness. However, the underlying molecular mechanism for the anti-obesity action of CLA isomers are not well understood. The purpose of this study was to examine the effects of t10c12 and c9t11 on lipid accumulation, cell proliferation, cell death and the expression levels of Ucp genes which are proposed as targets for anti-obesity in 3T3-L1 preadipocytes. Isomers of CLA at 50$\mu$M were added into preadipocyte differentiation medium for 3, 6 and 9days. Control cells received only the vehicle in the differentiation medium. Cytochemical analyses for lipid accumulation, cell proliferation and apotosis were carried out to compare lipidogenesis and cellular activity. RT-PCR analysis of GAPDH, Ucp 2,3 and 4 were also performed to find any modulatory effects of CLA isomers on the metabolic genes. Lipid accumulation indicated by Oil Red-O staining was inhibited in CLA isomers as compared to the control. T10c12 isomer showed less lipidogenesis than c9t11 did. A decrease occurred in CLA isomers as shown by BrdU incorporation. Apotosis has occured at higher level in t10c12 when compared to that of t9c11. Ucp 2, 3 and 4 genes were also upregulated in CLA isomers. T10c12 showed higher level of Ucp gene expressions than the c9t11 did. The biological activities of CLA isomers were also found to be different during differentiation of 3T3-L1 preadipocytes, suggesting that different isomers may be active in certain stage of lipidogenesis. The results indicate that both c9t11 and t10c12 CLA isomers decrease lipidogenesis, inhibit cell proliferation, increase cell death and upregulate in Ucp gene expressions during 3T3-L1 preadipocyte differentiation. T10c12 isomer was more effective than c9t11 in overall anti-obesity activity.

Differentiation and identification of ginsenoside structural isomers by two-dimensional mass spectrometry combined with statistical analysis

  • Xiu, Yang;Ma, Li;Zhao, Huanxi;Sun, Xiuli;Li, Xue;Liu, Shuying
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.368-376
    • /
    • 2019
  • Background: In the current phytochemical research on ginseng, the differentiation and structural identification of ginsenosides isomers remain challenging. In this paper, a two-dimensional mass spectrometry (2D-MS) method was developed and combined with statistical analysis for the direct differentiation, identification, and relative quantification of protopanaxadiol (PPD)-type ginsenoside isomers. Methods: Collision-induced dissociation was performed at successive collision energy values to produce distinct profiles of the intensity fraction (IF) and ratio of intensity (RI) of the fragment ions. To amplify the differences in tandem mass spectra between isomers, IF and RI were plotted against collision energy. The resulting data distributions were then used to obtain the parameters of the fitted curves, which were used to evaluate the statistical significance of the differences between these distributions via the unpaired t test. Results: A triplet and two pairs of PPD-type ginsenoside isomers were differentiated and identified by their distinct IF and RI distributions. In addition, the fragmentation preference of PPD-type ginsenosides was determined on the basis of the activation energy. The developed 2D-MS method was also extended to quantitatively determine the molar composition of ginsenoside isomers in mixtures of biotransformation products. Conclusion: In comparison with conventional mass spectrometry methods, 2D-MS provides more direct insights into the subtle structural differences between isomers and can be used as an alternative approach for the differentiation of isomeric ginsenosides and natural products.

A study on Anaerobic Biodegradation of Dichlorophenol (Dichlorophenol의 혐기성 분해에 관한 연구)

  • Park, Ju Seuk;Jeon, Yeon Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.2
    • /
    • pp.127-135
    • /
    • 1995
  • The purpose of this study was to more fully evaluate the potential for chlorophenol degradation in anaerobic sludge. The pH effects on the ring cleavage of phenol and dechlorination of monochlorophenol isomers and dichlorophenl isomers. This study results are as follows ; Each of the monochlorophenol isomers were degraded in anaerobic sludge. The relatives rates were 2-Chlorophenol > 3-Chlorophenol > 4-Chlorophenol. Biodegradation results for the dichlorophenol isomers in anaerobic sludge are such as 2,3-dichlorophenol and 2,5-dichlorophenol was reductively dechlorinated to 3-chlorophenol, 2,4-dichlorophenol to 4-chlorophenol, 2,6-dichlorophenol to 2-chlorophenol. The two dichlorophenol isomers which did not contain an ortho Cl substituent 3,4-dichlorophenol and 3,5-dichlorophenol were persistent during the 6-week incubation. The rate of dechlorination was enhanced by the presence of a Cl group ortho, rather than para, to the site of dechlorination.

  • PDF

Bioactive Conjugated Linoleic Acid (CLA) in Milk

  • Kee, Jun-Ill;Ganesan, Palanivel;Kwak, Hae-Soo
    • Food Science of Animal Resources
    • /
    • v.30 no.6
    • /
    • pp.879-885
    • /
    • 2010
  • Conjugated linoleic acid (CLA) isomers are found naturally in foods, such as milk, milk products, beef and others, from biohydrogenation of vegetable oils. They are heterogenous group of isomers of linoleic acid in the family of polyunsaturated fatty acids. Among the isomers of linoleic acid cis9, trans11- CLA (c9, t11-CLA) and trans10, cis12- CLA (t10, c12-CLA) are found to be biologically active isomers. These biologically active isomers either individual or combined found to be health beneficial in various diseases, such as cancer, diabetes, obesity, and atherosclerosis, conclusive participation in physiological processes are necessary. This review focused on the current study of CLA in prevention of disease, such as cancer, diabetes and atherosclerosis, and their effective function in body fat reduction, improvement of bone and muscle mass at a cellular, clinical and systematic level.

Structural Isomers and Excited States of HN3

  • Cho, Ji-Eun;Lee, Hee-Soon;Choi, Cheol-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3641-3643
    • /
    • 2011
  • Multiconfigurational wavefunctions were adopted to study structural isomers, their isomerization reactions and excited states of $HN_3$. In addition to the known linear isomer, two new structural isomers were found. The three isomers can be classified as sp, $sp^2$ and $sp^3$ hybridized species, respectively. The sp3 hybridized species turned out to be the second most stable. Large reaction barriers among these species prevent thermal isomerizations. A low-lying $^3A'$ exists with a relative energy of 13.5 kcal/mol. Dramatic re-hybridization and bond elongation was found in the first excited $^1A"$.