• 제목/요약/키워드: iterative method

검색결과 2,058건 처리시간 0.035초

An Iterative Method for Equilibrium and Constrained Convex Minimization Problems

  • Yazdi, Maryam;Shabani, Mohammad Mehdi;Sababe, Saeed Hashemi
    • Kyungpook Mathematical Journal
    • /
    • 제62권1호
    • /
    • pp.89-106
    • /
    • 2022
  • We are concerned with finding a common solution to an equilibrium problem associated with a bifunction, and a constrained convex minimization problem. We propose an iterative fixed point algorithm and prove that the algorithm generates a sequence strongly convergent to a common solution. The common solution is identified as the unique solution of a certain variational inequality.

BLOCK ITERATIVE METHODS FOR FUZZY LINEAR SYSTEMS

  • Wang, Ke;Zheng, Bing
    • Journal of applied mathematics & informatics
    • /
    • 제25권1_2호
    • /
    • pp.119-136
    • /
    • 2007
  • Block Jacobi and Gauss-Seidel iterative methods are studied for solving $n{\times}n$ fuzzy linear systems. A new splitting method is considered as well. These methods are accompanied with some convergence theorems. Numerical examples are presented to illustrate the theory.

유한요소법을 이용한 압축력으로 인한 균열 표면의 마찰접촉 해석 (Frictional Contact Analysis of the compression-Induced Crack Surfaces using the Finite element Method)

  • 김방원;이기수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.517-522
    • /
    • 2000
  • When a body including a crack inside is subjected to the compressive forces, the crack is closed and sliding occurs on the crack surfaces. In this work, a subsurface crack subjected to a static or moving compressive load is analyzed with the finite element method considering friction on the crack surface. The friction on the crack surface is assumed to follow the Coulomb friction law. A numerical method based on the finite element method and iterative method is applied in this work. And the result is compared with the frictional contact of crack by ANSYS using contact 12 element. The numerical results of two methods are compared with the wellknown analytical solutions, and the accuracy of iterative method is checked..

  • PDF

적응적 Element-free Galerkin Method 해석을 위한 이중투영법의 개선 (A modification of double projection method for adaptive analysis of Element-free Galerkin Method)

  • 이계희;정흥진;이태열
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.615-622
    • /
    • 2002
  • In this paper, the modification of double projection method for the adaptive analysis of Element-free Galerkin(EFG) method were proposed. As results of the double projection method, the smoothed error profile that is adequate for adaptive analysis was obtained by re-projection of error that means the differences of EFG stress and projected stress. However, it was found that the efficiency of double projection method is degraded as increase of the numerical integration order. Since, the iterative refinement to single step error estimation made the same effect as increasing of integration order, the application of the iterative refinement base on double projection method could be produced the inadequately refined analysis model. To overcome this defect, a modified scheme of double projection were proposed. In the numerical example, the results did not show degradation of double projection effect in iterative refinement and the efficiency of proposed scheme were proved.

  • PDF

할선강성을 이용한 직접내진설계 (Direct Earthquake Design Using Secant Stiffness)

  • 박홍근;엄태성
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.239-246
    • /
    • 2003
  • A new earthquake design method performing iterative calculations using secant stiffness was developed. The proposed design method has the advantages of convenience and stability in numerical analysis because it uses elastic analysis. At the same time, the proposed design method can accurately estimate the strength and ductility demands on the members because it performs the analysis on the inelastic behavior of structure using iterative calculation. In the present study, the procedure of the proposed design method was established, and a computer program incorporating the proposed method was developed. Design examples using the proposed method were presented, and its advantages were presented by the comparisons with existing design methods using elastic or inelastic analysis. The proposed design method, as an integrated method of analysis and design, can address the earthquake design strategy devised by the engineer, such as ductility limit on each member, the design concept of strong column - weak beam, and etc. Through iterative calculations on the structure preliminarily designed only with member sizing, the strength and ductility demands of each member can be directly calculated so as to satisfy the given design strategy As the result economical and safe design can be achieved.

  • PDF

AN ITERATIVE METHOD FOR NONLINEAR MIXED IMPLICIT VARIATIONAL INEQUALITIES

  • JEONG, JAE UG
    • 호남수학학술지
    • /
    • 제26권4호
    • /
    • pp.391-399
    • /
    • 2004
  • In this paper, we develop an iterative algorithm for solving a class of nonlinear mixed implicit variational inequalities in Hilbert spaces. The resolvent operator technique is used to establish the equivalence between variational inequalities and fixed point problems. This equivalence is used to study the existence of a solution of nonlinear mixed implicit variational inequalities and to suggest an iterative algorithm for solving variational inequalities. In our results, we do not assume that the mapping is strongly monotone.

  • PDF

Takagi-Sugeno 퍼지모델에 기반한 반복학습제어 시스템: 이차원 시스템이론을 이용한 접근방법 (Takagi-Sugeno Fuzzy Model-Based Iterative Learning Control Systems: A Two-Dimensional System Theory Approach)

  • 추준욱;이연정;최봉열
    • 제어로봇시스템학회논문지
    • /
    • 제8권5호
    • /
    • pp.385-392
    • /
    • 2002
  • This paper introduces a new approach to analysis of error convergence for a class of iterative teaming control systems. Firstly, a nonlinear plant is represented using a Takagi-Sugeno(T-S) fuzzy model. Then each iterative learning controller is designed for each linear plant in the T-S fuzzy model. From the view point of two-dimensional(2-D) system theory, we transform the proposed learning systems to a 2-D error equation, which is also established if the form of T-S fuzzy model. We analyze the error convergence in the sense of induced L$_2$-norm, where the effects of disturbances and initial conditions on 2-D error are considered. The iterative teaming controller design problem to guarantee the error convergence can be reduced to the linear matrix inequality problem. This method provides a systematic design procedure for iterative teaming controller. A simulation example is given to illustrate the validity of the proposed method.

Elastodynamic analysis by a frequency-domain FEM-BEM iterative coupling procedure

  • Soares, Delfim Jr.;Goncalves, Kleber A.;de Faria Telles, Jose Claudio
    • Coupled systems mechanics
    • /
    • 제4권3호
    • /
    • pp.263-277
    • /
    • 2015
  • This paper presents a coupled FEM-BEM strategy for the numerical analysis of elastodynamic problems where infinite-domain models and complex heterogeneous media are involved, rendering a configuration in which neither the Finite Element Method (FEM) nor the Boundary Element Method (BEM) is most appropriate for the numerical analysis. In this case, the coupling of these methodologies is recommended, allowing exploring their respective advantages. Here, frequency domain analyses are focused and an iterative FEM-BEM coupling technique is considered. In this iterative coupling, each sub-domain of the model is solved separately, and the variables at the common interfaces are iteratively updated, until convergence is achieved. A relaxation parameter is introduced into the coupling algorithm and an expression for its optimal value is deduced. The iterative FEM-BEM coupling technique allows independent discretizations to be efficiently employed for both finite and boundary element methods, without any requirement of matching nodes at the common interfaces. In addition, it leads to smaller and better-conditioned systems of equations (different solvers, suitable for each sub-domain, may be employed), which do not need to be treated (inverted, triangularized etc.) at each iterative step, providing an accurate and efficient methodology.

의용 전자파 영상을 위한 MoM 기반 Born 반복법의 적용 (MOM-Based Born Iterative Method for Medical Microwave Imaging)

  • 손재기;김보라;이택경;손성호;전순익;이재욱
    • 한국전자파학회논문지
    • /
    • 제23권4호
    • /
    • pp.524-532
    • /
    • 2012
  • 본 논문에서는 전자파를 이용하여 인체 내 암 조직을 찾아내기 위해 역산란 방법인 BIM(Born Iterative Method)을 이용한 알고리즘으로 구현하였다. Born 반복법을 이용하여 2차원 유방암 진단에 적용하였으며, 전자파산란 해석에는 적분방정식과 2차원 그린함수를 이용한 MoM(Method of Moment)을 이용하였다. 또한, 유방암 진단에 있어 적용된 역산란 알고리즘의 계산 결과를 확인하고, 암진단 의료기기로의 적용가능성과 알고리즘 사용에 제한을 분석하였다.

DIRECT INELASTIC EARTHQUAKE DESIGN OF R/C STRUCTURE

  • 박홍근;엄태성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.472-477
    • /
    • 2004
  • A new earthquake design method performing iterative calculations with secant stiffness was developed. Since basically the proposed design method uses linear analysis, it is convenient and stable in numerical analysis. At the same time, the proposed design method can accurately estimate the inelastic strength and ductility demands of the structural members through iterative calculations. In the present study, the procedure of the proposed design method was established, and a computer program incorporating the proposed method was developed. The proposed method, as an integrated analysis and design method, can directly address the earthquake design strategy intended by the engineer, such as limited ductility of member and the concept of strong column - weak beam. Through iterative calculations on a structural model with member sizes preliminarily assumed, the strength and ductility demands of each member can be determined so as to satisfy the given design strategy. As the result, structural safety and economical design can be achieved.

  • PDF