• Title/Summary/Keyword: iterative two-stage method

Search Result 24, Processing Time 0.028 seconds

Structural damage identification using an iterative two-stage method combining a modal energy based index with the BAS algorithm

  • Wang, Shuqing;Jiang, Yufeng;Xu, Mingqiang;Li, Yingchao;Li, Zhixiong
    • Steel and Composite Structures
    • /
    • v.36 no.1
    • /
    • pp.31-45
    • /
    • 2020
  • The purpose of this study is to develop an effective iterative two-stage method (ITSM) for structural damage identification of offshore platform structures. In each iteration, a new damage index, Modal Energy-Based Damage Index (MEBI), is proposed to help effectively locate the potential damage elements in the first stage. Then, in the second stage, the beetle antenna search (BAS) algorithm is used to estimate the damage severity of these elements. Compared with the well-known particle swarm optimization (PSO) algorithm and genetic algorithm (GA), this algorithm has lower computational cost. A modal energy based objective function for the optimization process is proposed. Using numerical and experimental data, the efficiency and accuracy of the ITSM are studied. The effects of measurement noise and spatial incompleteness of mode shape are both considered. All the obtained results show that under these influences, the ITSM can accurately identify the true location and severity of damage. The results also show that the objective function based on modal energy is most suitable for the ITSM compared with that based on flexibility and weighted natural frequency-mode shape.

악조건하의 비동일평면 카메라 교정을 위한 알고리즘

  • Ahn, Taek-Jin;Lee, Moon-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.1001-1008
    • /
    • 2001
  • This paper presents a new camera calibration algorithm for ill-conditioned cases in which the camera plane is nearly parallel to a set of non-coplanar calibration boards. for the ill-conditioned case, most of existing calibration approaches such as Tsais radial-alignment-constraint method cannot be applied. Recently, for the ill-conditioned coplanar calibration Lee&Lee[16] proposed an iterative algorithm based on the least square method. The non-coplanar calibration algorithm presented in this paper is an iterative two-stage procedure with extends the previous coplanar calibration algorithm. Through the first stage, camera, position and orientation parameters as well as one radial distortion factor are determined optimally for a given data of the scale factor and the focal length. In the second stage, the scale factor and the focal length are locally optimized. This process is repeated until any improvement cannot be expected any more Computational results are provided to show the performance of the algorithm developed.

  • PDF

A Camera Calibration Algorithm for an Ill-Conditioned Case (악조건하의 카메라 교정을 위한 알고리즘)

  • Lee, Jung-Hwa;Lee, Moon-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.164-175
    • /
    • 1999
  • If the camera plane is nearly parallel to the calibration board on which objects are defined, most of existing calibration approaches such as Tsai's radial-alignment-constraint method cannot be applied. Recently, for such an ill-conditioned case, Zhuang & Wu suggested the linear two-stage calibration algorithm assuming that the exact values of focal length and scale factor are known a priori. In this paper, we developed an iterative two-stage algorithm starts with initial guess fo the two parameters to determine the value of the others using Zhuang & Wu's method. In the second stage, the two parameters are locally optimized. This process is repeated until any improvement cannot be expected any more. The performance comparison between Zhuang & Wu's method and our algorithm shows the superiority of ours. Also included are the computational results for the effects of the distribution and the number of calibration points on the calibration performance.

  • PDF

Predicting aerodynamic characteristics of two-dimensional automobile shapes in ground proximity using an iterative viscous-potential flow technique (점성-비점성 유동 반복계산 방법을 이용한 2차원 자동차모형의 공력 특성 예측)

  • 최도형;최철진
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.52-61
    • /
    • 1986
  • An iterative viscous-potential flow procedure has been developed and used to predict aerodynamic characteristics of automobiles in ground proximity. The method is capable of predicting the effects of separated flows. The viscous-potential flow iteration procedure provides the connection between potential flow, boundary layer and wake modules. The separated wake is modeled in the potential flow analysis by thin sheets across which exists a jump in velocity potential. The ground effect is properly accounted for by placing a body image in the potential flow calculation. The agreement between theory and experiment is good and, thus, demonstrates that the method can be used in the preliminary design stage.

  • PDF

Financial Application of Time Series Prediction based on Genetic Programming

  • Yoshihara, Ikuo;Aoyama, Tomoo;Yasunaga, Moritoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.524-524
    • /
    • 2000
  • We have been developing a method to build one-step-ahead prediction models for time series using genetic programming (GP). Our model building method consists of two stages. In the first stage, functional forms of the models are inherited from their parent models through crossover operation of GP. In the second stage, the parameters of the newborn model arc optimized based on an iterative method just like the back propagation. The proposed method has been applied to various kinds of time series problems. An application to the seismic ground motion was presented in the KACC'99, and since then the method has been improved in many aspects, for example, additions of new node functions, improvements of the node functions, and new exploitations of many kinds of mutation operators. The new ideas and trials enhance the ability to generate effective and complicated models and reduce CPU time. Today, we will present a couple of financial applications, espc:cially focusing on gold price prediction in Tokyo market.

  • PDF

An Iterative Analysis of Single-Hop B-MAC Networks Under Poisson Traffic

  • Jung, Sung-Hwan;Choi, Nak-Jung;Kwon, Tae-Kyoung
    • Journal of Communications and Networks
    • /
    • v.14 no.1
    • /
    • pp.40-50
    • /
    • 2012
  • The Berkeley-medium access control (B-MAC) is a lightweight, configurable and asynchronous duty cycle medium access control (MAC) protocol in wireless sensor networks. This article presents an analytic modelling of single-hop B-MAC protocol under a Poisson traffic assumption.Our model considers important B-MAC parameters such as the sleep cycle, the two stage backoff mechanism, and the extended preamble. The service delay of an arriving packet and the energy consumption are calculated by an iterative method. The simulation results verify that the proposed analytic model can accurately estimate the performance of single-hop B-MAC with different operating environments.

Analysis of Underground Box Structures with Inelastic Soil Spring (비탄성 지반 스프링을 이용한 지하 구조물의 해석)

  • Oh, Chi-Woong;Chung, Jae-Hoon;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.91-96
    • /
    • 2002
  • There are many methods for analyzing underground box structures. One is the method of Iterative removal of tensional spring. The other is the method of modeling of ground to 8-node elastic-plastic planar element. In this study, We use inelastic soil spring element for analyzing underground box structures. First, if N-value is over 50, the results of inelastic soil spring method is the same as the method of 8-node planar element in last stage. Second, as N is increasing, element forces in two methods are generally decreasing. Third, as N-value is increasing, element forces in two method are generally decreasing and displacement has decreasing incline. This is the same as the force-displacement curve of general underground structures.

A One-Pass Standard Cell Placement Algorithm Using Multi-Stage Graph Model (다단 그래프 모델을 이용한 빠른 표준셀 배치 알고리즘)

  • 조환규;경종민
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.6
    • /
    • pp.1074-1079
    • /
    • 1987
  • We present a fast, constructive algorithm for the automatic placement of standard cells, which consists of two steps. The first step is responsible for cell-row assignment of each cell, and converts the circuit connectivity into a multi-stage graph under to constraint that sum of the cell-widths in each stage of the multi-state graph does not exceed maximum cell-row width. Generatin of feed-through cells in the final layout was shown to be drastically reduced by this step. In the second step, the position of each cell within the row is determined one by one from left to right so that the cost function such as the local channel density is minimized. Our experimental result shows that this algorithm yields near optimal results in terms of the number of feed-through cells and the horizontal tracks, while running about 100 times faster than other iterative procedures such as pairwise interchange and generalized force directed relaxation method.

  • PDF

A method of minimum-time trajectory planning ensuring collision-free motion for two robot arms

  • Lee, Jihong;Bien, Zeungnam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.990-995
    • /
    • 1990
  • A minimum-time trajectory planning for two robot arms with designated paths and coordination is proposed. The problem considered in this paper is a subproblem of hierarchically decomposed trajectory planning approach for multiple robots : i) path planning, ii) coordination planning, iii) velocity planning. In coordination planning stage, coordination space, a specific form of configuration space, is constructed to determine collision region and collision-free region, and a collision-free coordination curve (CFCC) passing collision-free region is selected. In velocity planning stage, normal dynamic equations of the robots, described by joint angles, velocities and accelerations, are converted into simpler forms which are described by traveling distance along collision-free coordination curve. By utilizing maximum allowable torques and joint velocity limits, admissible range of velocity and acceleration along CFCC is derived, and a minimum-time velocity planning is calculated in phase plane. Also the planning algorithm itself is converted to simple numerical iterative calculation form based on the concept of neural optimization network, which gives a feasible approximate solution to this planning problem. To show the usefulness of proposed method, an example of trajectory planning for 2 SCARA type robots in common workspace is illustrated.

  • PDF

Design and Performance Evaluation of an Assemble-To-Order System (주문- 조립시스템의 설계 및 성능평가)

  • 박찬우;이효성
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.27 no.4
    • /
    • pp.41-65
    • /
    • 2002
  • We study a multi-component production/inventory system in which individual components are made to meet various demand types. We assume that the demands arrive according to a Poisson process, but there is a fixed probability that a demand requests a particular kit of different components. Each component is produced by a flow line with several stations in which the processing times of each station follow a two-stage Coxian distribution. The production of each component is operated by an independent base-stock policy with blocking. We assume that the time needed to assemble final products follows a general distribution and the capacity of an assembling facility is sufficiently large. The objective of this study is to obtain key performance measures such as the distribution of the number of each orders for each final product and the mean time of fulfilling a customer order. The basic principle of the proposed approximation method is to decompose the original system into a set of subsystems, each subsystem being associated with a flow line. Each subsystem is analyzed in isolation using a Marie's method. An iterative procedure is then used to determine the unknown parameters of each subsystem. Numerical results show that the accuracy of the approximation method is acceptable.