• Title/Summary/Keyword: jelly phantom

Search Result 7, Processing Time 0.018 seconds

Development of Polymeric Human Jelly Phantom for Hyper-Thermic Therapy by High Frequency Magnetic Field (고주파 자기장을 이용한 온열요법 치료용의 젤리형 고분자 모의인체)

  • Choi, Chang-Young;Kim, Byung-Hun;Hwang, Young-Jun;Kim, Oh-Young
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.90-93
    • /
    • 2008
  • We developed a variety of polymeric jelly phantoms that can be used in hyperthermia using an electromagnetic wave as an auxiliary cancer therapy. Particularly, using an appropriate material composed of polyethylene, deionized water, and sodium chloride, jelly phantoms for brain was prepared. Also, their electrical properties were characterized by measuring the dielectric constant and conductivity. As the results, overall electrical values of the phantoms decreased with increasing the amount of the components of the materials, excepted for sodium chloride. Additionally, storage characteristics of the phantoms showed a sustainable stability up to 6 months. Based on the experimental results, it can be proposed that jelly phantoms containing a ferro-magnetic particle could be a potential material for cancer therapy following the further study on the temperature elevation effect and the evaluation of electromagnetic properties of the materials.

Development of Jelly-Type Simulating Polymer Based Human Tissue for Research on Hyperthermia by High Frequency Magnetic Field (고주파 자계 온열요법 연구를 위한 젤리형의 고분자계 모의인체)

  • Kim, Oh-Young;Choi, Chang-Young;Ma, Sung-Jae;Lim, Sang-Mung;Seo, Ki-Taek
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.572-575
    • /
    • 2006
  • In this work, a variety of polymer based jelly phantoms suitable for the hyperthermia operations to human organs was synthesized in order to confirm the possibility of auxiliary cancer therapy. Specifically, using an appropriate material composition including polyethylene, Jelly phantoms for brain was prepared and characterized their electrical properties suitable for the monitoring the effect of electromagnetic wave from code division multiple access (CDMA) and personal communication service (PCS) on the human body. In the future, after injection of ferromagnetic nanoparticle into the jelly phantoms, new approach to propose the cancer therapy can be anticipated by monitoring the degree of temperature rise in human body using the photograph of Infrared camera.

Evaluation of Scattered Rays of Jelly Type Shielding Body by L-spine AP using X-ray (L-Spine X-선 촬영에서의 Jelly type 차폐체의 산란선 차폐평가)

  • Jang, Hui-Min;Kim, Do-Gwon;Kim, Hyeong-Bin;Yoon, Joon
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.907-913
    • /
    • 2020
  • There have been continuous controversies on medical X-ray protection and numerous researchers have been trying to prevent unnecessary exposure to radiation. As X-ray passes through the patient and obtains an image, it creates scattered ray due to interactions such as photoelectric effect and Compton scattering with the subject. As a result, both medical radiation staff and patient are exposed to unnecessary radiation on areas other than the target area. In response, this study will be assuming a body of a female, radiating X-ray on the phantom under the conditions of lumbar spine AP test, and measuring scattered ray around breasts and thyroid glands. Then, The experiment results were as follows. After application of non-shielding material, the average of scattered ray was 0.88 mR in thyroid measurement, 3.34 mR, Lt Axillary 3.54 mR, and Rt Axillary 3.03 mR in mamonary measurement but, After application of shielding material, the average of scattered ray was 0.16 mR in thyroid measurement, 0.60 mR, Lt Axillary 0.64 mR, and Rt Axillary 0.54 mR in mamonary measurement showing average scattered ray protection effect of about 82%. This study suggested the manufacturing method of a Jelly-type shielding material, identified the possibilities of researches on mixing various substances with radiology field, and verified the usability of the Jelly-type shielding material as a substitute for existing protection tools.

Measurement of Prostate Phantom Volume Using Three-Dimensional Medical Imaging Modalities (3차원 의료영상진단기기를 이용한 가상 전립선 용적 측정)

  • Seoung, Youl-Hun;Joo, Yong-Hyun;Choe, Bo-Young
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.4
    • /
    • pp.285-291
    • /
    • 2010
  • Recently, advance on various modalities of diagnosing, prostate volume estimation became possible not only by the existing two-dimension medical images data but also by the three-dimensional medical images data. In this study, magnetic resonance image (MRI), computer tomography (CT) and ultrasound (US) were employed to evaluate prostate phantom volume measurements for estimation, comparison and analysis. For the prostate phantoms aimed at estimating the volume, total of 17 models were developed by using devils-tongue jelly and changing each of the 5ml of capacity from 20ml to 100ml. For the volume estimation through 2D US, the calculation of the diameter with C9-5Mhz transducer was conducted by ellipsoid formula. For the volume estimation through 3D US, the Qlab software (Philips Medical) was used to calculate the volume data estimated by 3D9-3Mhz transducer. Moreover, the images by 16 channels CT and 1.5 Tesla MRI were added by the method of continuous cross-section addition and each of imaginary prostate model's volume was yielded. In the statistical analysis for comparing the availability of volume estimation, the correlation coefficient (r) was more than 0.9 for all indicating that there were highly correlated, and there were not statistically significant difference between each of the correlation coefficient (p=0.001). Therefore, the estimation of prostate phantom volume using three-dimensional modalities of diagnosing was quite closed to the actual estimation.

Manufacturing of a Korean Hand Phantom with Human Electrical Properties at 835 MHz and 1,800 MHz Bands (835 MHz 및 1,800 MHz 대역에서 인체의 전기적 특성을 가지는 한국인 손 모양의 팬텀 제작)

  • Choi, Donggeun;Gimm, Yoonmyoung;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.5
    • /
    • pp.534-540
    • /
    • 2013
  • Interest of the hand effect on the electromagnetic wave are internationally increasing with the increase of the use of the mobile phone. IEC TC106(International Electrotechnical Commission, Technical Committee 106) promotes international research exchange program in order to reflect the effect of human hands in the standard assessment method of human exposure dosimetry by the electromagnetic wave of mobile phones. Since current commercialized hand phantom is manufactured by taking into account the average size of westerners and provides only one grip posture, it imposes many restrictions on the accurate SAR measurement. Therefore, the development of proper hand phantom accounting for domestic situation and various grip posture capability is essential in order to analyze the accurate effect of human hand on the exposure estimation. In this paper, a jelly hand phantom suitable for Korean was manufactured with various grip posture capability at 835 MHz and 1,800 MHz bands. Although the tolerances of permittivity and conductivity of the manufactured hand phantom are with ${\pm}10%$ each, it was much less than CTIA(Cellular Telecommunication Industry Association) tolerance of ${\pm}20%$ at both bands. Its 3D CAD(3 Dimensional Computer Aided Design) file which was developed can be utilized for the simulation of human hand effect on SAR measurement of mobile phones. The findings in this study can be utilized for the analysis of human hand effect on SAR measurement of a mobile phone.

Implementation of SAR Measurement System with Stationary Probes (Probe 고정형 SAR 측정 시스템)

  • Kim, Jeong-Ho;Gimm, Youn-Myoung
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.443-447
    • /
    • 2005
  • The SAR measurement system with stationary probes, presented in this paper, can calculate area SAR value based ell the measured 9 electric field data. By converting obtained area SAR to the volume SAR, the results can be acquired in a few seconds. The system can be very useful tool in the stages of handset development for mobile communication as well as in the handset production line because of its rapid SAR measurement. The system showed good linearity characteristics at 835 MHz of 10 $\sim$ 27 dBm input power range.

  • PDF

Implementation of SAR Measurement System with Stationary Probes (Probe 고정형 SAR 측정 시스템의 구현)

  • Kim Jeong-Ho;Gimm Youn-Myoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.2 s.105
    • /
    • pp.221-227
    • /
    • 2006
  • The SAR evaluation system with 9 stationary probes inserted into the object to be surveyed can calculate area SAR value based on the 9 measured electric field data. The results can be acquired in a few seconds by converting obtained area SAR to the volume SAR. The system can be very useful tool in the stages of handset development for mobile communication as well as in the handset production line because of its rapid SAR measurement ability. The validity of the measurement system is checked by showing that the measured SAR values agree well with reference SAR values suggested in the reference documents.