• Title/Summary/Keyword: joint dam operation

Search Result 11, Processing Time 0.035 seconds

Development of a Decision Support System for Turbid Water Management through Joint Dam Operation

  • Kim, Jeong-Kon;Ko, Ick-Hwan;Yoo, Yang-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.31-39
    • /
    • 2007
  • In this study we developed a turbidity management system to support the operation for effective turbid water management. The decision-making system includes various models for prediction of turbid water inflow, effective reservoir operation using the selective withdrawal facility, analysis of turbid water discharge in the downstream. The system is supported by the intensive monitoring devices installed in the upstream rivers, reservoirs, and downstream rivers. SWAT and HSPF models were constructed to predict turbid water flows in the Imha and Andong catchments. CE-QUAL-W2 models were constructed for turbid water behavior prediction, and various analyses were conducted to examine the effects of the selective withdrawal operation for efficient high turbid water discharge, turbid water distribution under differing amount and locations of turbid water discharge. A 1-dimensional dynamic water quality model was built using Ko-Riv1 for simulation of turbidity propagation in the downstream of the reservoirs, and 2-dimensional models were developed to investigate the mixing phenomena of two waters discharged from the Andong and Imha reservoirs with different temperature and turbidity conditions during joint dam operation for reducing the impacts of turbid water.

  • PDF

Evaluation of Effects of Real Joint-Operation of Multi-purpose Dams (다목적댐군의 실제 연계운영 효과 평가)

  • Kang, Min-Goo;Lee, Gwang-Man;Cha, Hyung-Sun
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.2 s.175
    • /
    • pp.101-112
    • /
    • 2007
  • In this study, a methodology was developed to evaluate the effects produced in the event of joint-operation of dams from the viewpoint of water use. It was applied to evaluating the actual results of dam operation in the Han River basin. In order to evaluate the effects of real joint-operation in terms of water supply and flow conditions, the methodology used the satisfaction rate of water requirement and the stability of flow conditions at the evaluation site as indicator. In order to evaluate the effects of joint-operation in terms of power generation, the total power generation produced by dams was used as evaluation indicator. Actual operation results were evaluated by comparison of evaluation indicators relating to single dam operation by which the notified mont of water was supplied, as well as to optimization models. Results of actual joint-operation of the Han River basin, from 2001 to 2004, were compared yearly with results from single operation and optimization model; in terms of water supply, the satisfaction ratio of water requirement stood at $94.36{\sim}99.68%$ for single operation, $97.16{\sim}99.90%$ for actual joint-operation, and 100.0 % for optimization model for all four years. The stability of flow condition was evaluated by the coefficient of river regime and coefficient of flow conditions definitely, indicating that flow conditions were more stable in case of actual operation and optimization models than in case of single operation. The actual total power generation was compared with that generated by other operation rules, indicating that the optimization model increased the power generation by $-3.47{\sim}6.54%$ compared with the actual total power generation, and that the single operation decreased the power generation amount by $12.68{\sim}38.94%$ compared with the actual total power generation.

Utilization of Peace Dam for Conservation Purpose (이수측면에서 평화의댐 활용방안 연구)

  • Yi, Jae-Eung;Lim, Dong-Sun;Lee, Jong-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.8
    • /
    • pp.653-662
    • /
    • 2004
  • In this study, the method of Increasing the flood control as well as conservation effects is studied by joint operation of Hwacheon and Peace Dam. After completing the second phase of the construction of the Peace Dam, the dam crest height will be increased from 225m and the storage capacity will also be increased. If storage capacity is increased and gates are installed, it will assist not only flood control but also conservation of the entire Han river basin. Considering the change of conservation levels, the change of the restricted water level of the Hwacheon Dam in flood season, and the inflow change into the Peace Dam through the simulated reservoir operation, the annual average power of Hwacheon Dam with 95% reliability, annual firm power, the volume of water supply is calculated. As a result, when the conservation level of the Peace Dam and the restricted water level of the Hwacheon Dam are increased, the generation capacity will be improved. However, even though the inflow decrease, the generation capacity will not be affected. If the inflow decrease under the same conditions, the water supply capability will be reduced to the range from 35% to 40%. It is necessary to increase conservation level to keep the same water supply capability.

Estimation of the Expected Socio-economic Benefits of the Largescale Comprehensive Agricultural Development Project and Jointcost Allocation -In the Case of Kumgang Project Area- (대단위 농업종합개발사업의 사회경제적 기대편익 추정과 결합비용의 배분 -금강지구를 중심으로-)

  • Lim, Jae Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.1
    • /
    • pp.159-176
    • /
    • 1996
  • This study is aimed at reviewing the methods of joint cost allocation and allocating the joint cost of estuary dam with specially repect to Kumgang Large-scale Agricultural Comprehensive Development Project. Apart from the water resource development project propelled by Water Resource Development Corporation in connection with Law of Multipurpose Dam Development, the Largescale Comprehensive Agricultural Development Projects couldn't ins-titutionally be carried out cost allocation of common facilities, even though it were concerned with irrigation, municipal and industrical water supply, flood control, sightseeing and industrial zone development components. To decrease farmer's burden of the project costs and, operation and maintenance costs, the joint costs of common facilities like estuary dam included in agricultural development projects have to be allocated by suitable method as alternative cost-remaining benefit method and the analytical activity should be supported by revising the concerned laws as Rural Development and Promotion and, Rural Rearrangement conpatible with the law for multipurpose dam development. Kumgang Agricultural Comprehensive Development Project was selected as a case study for the estimation of socio-economic benefits by project components and joint cost allocation of the estuary dam. The main results of the study are as follows; Joint cost allocation and unit charges by components 1. The project area will be 25,554ha with total project cost of 624,860 million won including the estuary dam cost of 120,843 million won. The project costs were ex-pressed by 1994 constant price. 2. Total quantity of water was estimated 365 million tons which were consisted of 245 million tons for irrigation, 73 million tons for municipal water and 47 million tons for industrial water. 3. The rates of joint cost allocation were amounted to 34.2% for agriculture, 2.5% for sightseeing, 45.7% for transportation, 11.8% for M & I water supply and 5.8% for flood control respectively. 4. The unit financial charges by project components were estimated at 7.88 won per ton for irrigation, 16.11won for M & I water, 1,686won per vehicle one pass, 977won per Pyeong according to the capital recovery method. The financial charges using straitline method for depreciation were estimated at 7.88won per ton for irrigation, 9.12won per ton for M & I water, 624won per vehicle one pass for transportation and 331won per Pyeong for sightseeing area. 5. The unit economic charges by project components were estimated at 21.1 won per ton for irrigation, 15.2won for M & I water, 977won per vehicle one pass, 977won per Pyeong according to the capital recovery method. The economic charges using straitline method for depreciation were estimated at 11.72won per ton for irrigation, 8.61won per ton for M & I water, 331won per vehicle one pass for transportation. Policy recommendation 1. The unit operation and maintenance costs for irrigation water in the paddy field couldn't be imposed as the water resource cost untreated. 2. The dam costs including investment cost and O & M cost, as a joint cost, had to be allocated by each benefited components as transportation, M & I water supply, flood control, irrigation and drainage, and sightseeing. But the agricultural comprehensive project have been dealt as an irrigation project without any appraisal socio-economic benefits and any allocating the joint cost of estuary dam. 3. All the associated project benefits and costs must be evaluated based on accounting principle and rent recovery rate of the project costs and O & M costs should be regulated by the laws concerned. 4. The rural development and promotion law and rural rearrangement law have to be revised comprising joint cost allocation considering free rider problems. 5. The government subsidy for the agricultural base development project has to be covered all the project costs. In case of common facilities representing joint cost allocation problems, all the allocated casts for other purposes like transportation and M & I water supply etc. should be recovered for formation in investment fund for agricultural base development and to procure O & M costs for irrigation facilities.

  • PDF

Development of Reservoir Operation Model using Simulation Technique in Flood Season(II) (모의기법에 의한 홍수기 저수지 운영 모형 개발(II))

  • Sing, Yong-Lo;Maeng, Sung-Jin;Ko, Ick-Hwan;Lee, Hwan-Ki
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.797-805
    • /
    • 2002
  • The EV ROM, a joint reservoir operation model for flood control that accounts for the downstream flow condition, has been introduced in the preceding article (Shin et al, 2000). A joint reservoir operation model computer program for the Geum river basin, developed by FORTRAN Power Station 4.0 using the EV ROM, is hereby presented. Three case studies of flood control by joint operation of the Yongdam and Daechung Multipurpose Dams in the Geum river basin revealed that the performance of the EV ROM was superior to the existing Rigid ROM and Technical ROM. This is because the EV ROM can account for the downstream flow condition as well as the upstream inflow and the reservoir water level. In order to apply for various floods events in the future, consistent improvement of the developed EV ROM and efforts for more accurate rainfall prediction are required.

Pressure analysis in grouting and water pressure test to achieving optimal pressure

  • Amnieh, Hassan Bakhshandeh;Masoudi, Majid;Kolahchi, Reza
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.685-699
    • /
    • 2017
  • In order to determine the rate of penetrability, water pressure test is used before the grouting. One of the parameters which have the highest effect is pressure. Mathematical modeling is used for the first time in this study to determine the optimum pressure. Thus, the joints that exist in the rock mass are simulated using cylindrical shell model. The joint surroundings are also modeled through Pasternak environment. In order to validate the modeling, pressure values obtained by the model were used in the sites of Seymareh and Aghbolagh dams and the relative error rates were measured considering the differences between calculated and actual pressures recorded in these operations. In water pressure test, in Seymareh dam, the error values were equal to 4.75, 3.93, 4.8 percent and in the Aghbolagh dam, were 22.43, 5.22, 2.6 percent and in grouting operation in Seymareh dam were equal to 9.09, 32.50, 21.98, 5.57, 29.61 percent and in the Aghbolagh dam were 2.96, 5.40, 4.32 percent. Due to differences in rheological properties of water and grout and based on the overall results, modeling in water pressure test is more accurate than grouting and this error in water pressure test is 7.28 percent and in grouting is 13.92 percent.

Sensitivity Analysis for Parameter of Rainfall-Runoff Model During High and Low Water Level Season on Ban River Basin (한강수계의 고수 및 저수기 유출모형 매개변수 민감도 분석)

  • Choo, Tai-Ho;Maeng, Seung-Jin;Ok, Chi-Youl;Song, Ki-Heon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1334-1343
    • /
    • 2008
  • Growing needs for efficient management of water resources urge the joint operation of dams and integrated management of whole basin. As one of the tools for supporting above tasks, this study aims to constitute a hydrologic model that can simulate the streamflow discharges at some control points located both upper and down stream of dams. One of the currently available models is being studied to be applied with a least effort in order to support the ongoing project of KWATER (Korea Water Resources Corporation), "Establishment of integrated operation scheme for the dams in Han River Basin". On this study, following works have been carried out : division of Han River Basin into 24 sub-basins, use of rainfall data of 151 stations to make spatial distribution of rainfall, selection of control points such as Soyanggang Dam, Chungju Dam, Chungju Release Control Dam, Heongseong Dam, Hwachun Dam, Chuncheon Dam, Uiam Dam, Cheongpyung Dam and Paldang Dam, selection of SSARR (Streamflow Synthesis and Reservoir Regulation) model as a hydrologic model, preparation of input data of SSARR model, sensitivity analysis of parameter using hydrologic data of 2002. The sensitivity analysis showed that soil moisture index versus runoff percent (SMI-ROP), baseflow infiltration index versus baseflow percent (BII-BFP) and surface-subsurface separation (S-SS) parameters are higher sensitive parameters to the simulation result.

Estimating of water pressure to avoid hydraulic fracturing in water pressure test

  • Amnieh, Hassan Bakhshandeh;Masoudi, Majid
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.171-177
    • /
    • 2017
  • Water pressure test operation is used before the grouting to determine the rate of penetrability, the necessity and estimations related to grouting, by the penetration of water into the borehole. One of the parameters which have the highest effect is pressure of water penetration since the application of excessive pressure causes the hydraulic fracture to occur in the rock mass, and on the other hand, it must not be so small that prevents from seeing mechanical weaknesses and the rate of permeability. Mathematical modeling is used for the first time in this study to determine the optimum pressure. Thus, the joints that exist in the rock mass are simulated using cylindrical shell model. The joint surroundings are also modeled through Pasternak environment. To obtain equations governing the joints and the surroundings, energy method is used accompanied by Hamilton principle and an analytical solution method is used to obtain the maximum pressure. In order to validate the modeling, the pressure values obtained by the model were used in the sites of Seymareh and Aghbolagh dams and the relative error rates were measured considering the differences between calculated and actual pressures. Modeling in the sections of Seymareh dam showed 4.75, 3.93, 4.8 percent error rates and in the sections of Aghbolagh dam it rendered the values of 22.43, 5.22, 2.6 percent. The results indicate that this modeling can be used to estimate the amount of pressure for hydraulic fracture in water pressure test, to predict it and to prevent it.

Study of east & west medical science documentary records of Hip joint pain (고관절(股關節) 질환(疾患)의 동서양의학적(東西洋醫學的) 고찰(考察))

  • Kim, Hyun-Soo;Kang, Jun-Hyuk;Hong, Seo-Young;Yoon, Il-Ji;Oh, Min-Seok
    • Journal of Haehwa Medicine
    • /
    • v.15 no.1
    • /
    • pp.125-140
    • /
    • 2006
  • Study of east & west medical science documentary records of Hip joint pain lead to following conclusions. 1. Easten medicine classify hip joint pain with terms "Bi-chu-tong", "Bi chu in tong" "Bi-chu-choong-tong". 2. Easten medicine asorts cause of hip joint pain with external factor, such as exogenous energy, six yin evil energy and intrinsic factor, which are weakness caused by prolonged deasease, warm-heat evil. 3. In western medicine, causes that trigger hip joint pain are trauma, fracture, dislocation,and bacterial infection. 4. Treatment of hip joint disorder in western medicine, physiotherapy concerning conservative treatment, and pain control with drug treatment, kinesitherapy are used, and concernig fracture, operation is used. 5. In Eastern medicine, principle of treating hip joint pain, sung-juk-sa-ji(盛則寫之), hu-juk-bo-ji(虛則補之), yul-juk-jil-ji(熱則疾之), han-juk-yu-ji(寒則留之), ham-ha-juk-chim-ji(陷下則沈之), bul-sung-bul-hu(不盛不虛), yi-kyong-chui-ji(以經取之) is presented. This priciple of treatment was descended through ages and is now applied to treatments such as Acupuncture, Herbal, physical treatment based on so-san-eo-hyul(消散瘀血), seo-kun-tong-rak(舒筋通絡), so-ri-kwan-jul(疏利關節) principle. 6. In Eastern medicine, meridians used to treat hip joint pain are The Chok yangmyung wi Kyong(足陽明胃經), Chok taeum bi Kyong(足太陰脾經), Chock soyang dam Kyong(足少陽膽經), Chock guelum gan Kyong(足厥陰肝經). In conclusion, hip joint pain should be considered in relationship with internal organs and whole body system. Western & Eastern point of view should be carefully inspected and connected and intensive study of nervous system and meridian is required, in order to adopt best treatment for the patients.

  • PDF

Evaluation of Flood Severity Using Bivariate Gumbel Mixed Model (이변량 Gumbel 혼합모형을 이용한 홍수심도 평가)

  • Lee, Jeong-Ho;Chung, Gun-Hui;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.9
    • /
    • pp.725-736
    • /
    • 2009
  • A flood event can be defined by three characteristics; peak discharge, total flood volume, and flood duration, which are correlated each other. However, a conventional flood frequency analysis for the hydrological plan, design, and operation has focused on evaluating only the amount of peak discharge. The interpretation of this univariate flood frequency analysis has a limitation in describing the complex probability behavior of flood events. This study proposed a bivariate flood frequency analysis using a Gumbel mixed model for the flood evaluation. A time series of annual flood events was extracted from observations of inflow to the Soyang River Dam and the Daechung Dam, respectively. The joint probability distribution and return period were derived from the relationship between the amount of peak discharge and the total volume of flood runoff. The applicability of the Gumbel mixed model was tested by comparing the return periods acquired from the proposed bivariate analysis and the conventional univariate analysis.