• Title/Summary/Keyword: kaempferol

Search Result 445, Processing Time 0.033 seconds

Kaempferol induced the apoptosis via cell cycle arrest in human breast cancer MDA-MB-453 cells

  • Choi, Eun-Jeong;Ahn, Woong-Shick
    • Nutrition Research and Practice
    • /
    • v.2 no.4
    • /
    • pp.322-325
    • /
    • 2008
  • The aim of present study was to investigate the effects of kaempferol on cellular proliferation and cell cycle arrest and explore the mechanism for these effects in human breast carcinoma MDA-MB-453 cells. Cells were treated with kaempferol at various concentrations (ranging from 1 to $200\;{\mu}M$) for 24 and 48 hrs. Kaempferol significantly inhibited cancer cell growth in cells exposed to 50 and $10\;{\mu}M$ of kaempferol and incubated for 24 and 48 hrs, respectively. Exposure to kaempferol resulted in cell cycle arrest at the G2/M phase. Of the G2/M-phase related proteins, kaempferol down-regulated CDK1 and cyclin A and B in cells exposed to kaempferol. In addition, small DNA fragments at the sub-G0 phase were increased by up to 23.12 and 31.90% at 10 and $50\;{\mu}M$ incubated for 24 and 48 hrs, respectively. The kaempferol-induced apoptosis was associated with the up-regulation of p53. In addition, the phosphorylation of p53 at the Ser-15 residue was observed with kaempferol. Kaempferol inhibits cell proliferation by disrupting the cell cycle, which is strongly associated with the induction of arrest at G2/M phase and may induce apoptosis via p53 phosphorylation in human breast carcinoma MDA-MB-453 cells.

Effects of Kaempferol, an Antioxidant, on the Bioavailability and Pharmacokinetics of Nimodipine in Rats

  • Park, Ji-Won;Choi, Jin-Seok;Choi, Jun-Shik
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.5
    • /
    • pp.301-307
    • /
    • 2011
  • The aim of this study was to investigate the effects of kaempferol on the pharmacokinetics of nimodipine in rats. Nimodipine and kaempferol interact with cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp), and the increase in the use of health supplements may result in kaempferol being taken concomitantly with nimodipine as a combination therapy to treat orprevent cardiovascular disease. The effect of kaempferol on P-gp and CYP3A4 activity was evaluated and Pharmacokinetic parameters of nimodipine were determined in rats after an oral (12 mg/kg) and intravenous (3 mg/kg) administration of nimodipine to rats in the presence and absence of kaempferol (0.5, 2.5, and 10 mg/kg). Kaempferol inhibited CYP3A4 enzyme activity in a concentration-dependent manner with 50% inhibition concentration ($IC_{50}$) of $17.1{\mu}M$. In addition, kaempferol significantly enhanced the cellular accumulation of rhodamine-123 in MCF-7/ADR cells overexpressing P-gp. Compared to the oral control group, the area under the plasma concentration-time curve ($AUC_{0-\infty}$) and the peak plasma concentration ($C_{max}$) of nimodipine significantly increased, respectively. Consequently, the absolute bioavailability of nimodipine in the presence of kaempferol (2.5 and 10 mg/kg) was 29.1-33.3%, which was significantly enhanced compared to the oral control group (22.3%). Moreover, the relative bioavailability of nimodipine was 1.30- to 1.49-fold greater than that of the control group. The pharmacokinetics of intravenous nimodipine was not affected by kaempferol in contrast to those of oral nimodipine. Kaempferol significantly enhanced the oral bioavailability of nimodipine, which might be mainly due to inhibition of the CYP3A4-mediated metabolism of nimodipine in the small intestine and /or in the liver and to inhibition of the P-gp efflux transporter in the small intestine by kaempferol. The increase in oral bioavailability of nimodipine in the presence of kaempferol should be taken into consideration of potential drug interactions between nimodipine and kaempferol.

Biphasic Effects of Kaempferol on the Estrogenicity in Human Breast Cancer Cells

  • Oh Seung-Min;Kim Yeon-Pan;Chung Kyu-Hyuck
    • Archives of Pharmacal Research
    • /
    • v.29 no.5
    • /
    • pp.354-362
    • /
    • 2006
  • Dietary flavonoids have attracted a great deal of attention as agents for preventing estrogen-related diseases, such as postmenopausal symptoms, and for reducing the risk of estrogen-dependent cancer. Kaempferol is one of the most commonly found dietary phytoestrogen. The aim of this study was to investigate the estrogenic and/or antiestrogenic effect of kaempferol, which can confirm its potency as a preventive agent against estrogen-related diseases. Kaempferol has both estrogenic and antiestrogenic activity, which are biphasic response on estrogen receptor. The estrogenic activity of kaempferol induced via ER-mediated pathway depending on $E_2$ concentration $(\leq\;10^{-12}M)$. Kaempferol $(10^{-5}\;M)$ also caused antiproliferative effect on MCF-7 cell in the presence of $E_2\;(10^{-11}\;M)$ and restored to the addition of excess $E_2\;(10^{-7}\;M)$, which confirms that antiproliferation of kaempferol was induced via ER-dependent pathway. However, at $10^{-4}\;M$, concentration higher than the concentrations at which the estrogenic effects of kaempferol are detected $(10^{-5}\;M)$, kaempferol induced strong antiproliferative effect, but were unaffected by the addition of excess $E_2\;(10^{-7}\;M)$ indicating that kaempferol exerts antiproliferation via ER-independent pathway. In particular, kaempferol blocked the focus formation induced by $E_2$, which confirms that kaempferol might inhibit the malignant transformation caused by estrogens. Therefore, we suggested that kaempferol might regulate a suitable level of estrogenic activity in the body and is expected to have potential beneficial effects in preventing estrogen imbalance diseases (breast cancer, osteoporosis, cardiovascular disease and etc.).

Study on the Anti-inflammatory Effect of Kaempferol and Kaempferol Rhamnosides Isolated from Hibiscus cannabinus L. (양마에서 분리한 Kaempferol 및 그 배당체의 항염증 효과에 관한 연구)

  • Lee, Keun-Ha;Cho, Young-Long;Joo, Chul-Gue;Joo, Yeon-Jeong;Kwon, Sun-Sang;Park, Chung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.6
    • /
    • pp.426-434
    • /
    • 2011
  • In this study, to evaluate the anti-inflammatory effects of kaempferol and its rhamnosides isolated from Hibiscus cannabinus L. leaves, we investigated UVB-induced inhibitory effects on inflammatory reaction by measuring the cytokine as the prostaglandin ($PGE_2$), interleukine-6 (IL-6) and interleukine-8 (IL-8). We investigated the inhibitory effects of kaempferol and its rhamnosides on TARC (thymus and activation-regulated chemokine) and $PGE_2$. Kaempferol and ${\alpha}$-rhamnoisorobin showed inhibition activity of TARC generated to compared to positive control. Kaempferol, ${\alpha}$-rhamnoisorobin and afzelin Inhibited the release of $PGE_2$. Also, only kaempferol significantly inhibited interleukine-6 (IL-6), interleukine-8 (IL-8) among UVB-induced inflammatory cytokine.

Constituents of Carthami flos (홍화의 후라보노이드 성분)

  • Kim, Ki-Heun;Kim, Myung-Nyu
    • YAKHAK HOEJI
    • /
    • v.36 no.6
    • /
    • pp.556-562
    • /
    • 1992
  • Sevral flavonoids were isolated from the ethanol extract of Carthami flos which has been used in treatment of uterin congestion and also as analgesic and antiinflammatory. They were elucidated as kaempferol, quercetin, 6-hydroxy kaempferol, kaempferol 3-glucoside (Astragalin), quercetin 3-glucoside (isoquercitrin), quercetin 7-glucoside (quercimeritrin), kaempferol 3-rutinoside and quercetin 3-rutinoside (rutin). The structures of the isolated compounds were established by spectroscopic and chemical methods.

  • PDF

Flavonoids from the Leaves of Polygalga japonica

  • Do, Jae-Chul;Yu, Young-Jun;Jung, Keun-Young;Son, Kun-Ho
    • Korean Journal of Pharmacognosy
    • /
    • v.23 no.1
    • /
    • pp.9-13
    • /
    • 1992
  • From the leaves of Polygala japonica, kaempferol (1), astragalin (2), kaempferol $3-O-(6'-O-acetyl)-{\beta}-D-glucopyranoside$ (3) and kaempferol $3,7-di-O-{\beta}-D-glucopyranoside$ (4), have been isolated and characterized by chemical and spectral means.

  • PDF

Flavonoids and Aromatic Compounds from the Rhizomes of Zingiber zerumbet

  • Jang Dae Sik;Han Ah-Reum;Park Gowooni;Jhon Gil-Ja;Seon Eun-Kyoung
    • Archives of Pharmacal Research
    • /
    • v.27 no.4
    • /
    • pp.386-389
    • /
    • 2004
  • Repeated column chromatography of the CHCI_3-soluble fraction of Zingiber zerumbet led to the isolation and identification of two aromatic compounds, p-hydroxybenzaldehyde (1) and vanillin (2), and six kaempferol derivatives, kaempferol-3,4',7-O-trimethylether (3), kaempferol-3-O-methylether (4), kaempferol-3,4'-O-dimethylether (5), 4'-O-acetylafzel in (6), kaempferol-3-O-(4-O-acetyl-$\alpha$-L-rhamnopyranoside)], 2',4'-O-diacetylafzelin (7), kaempferol-3-O-(2,4-O-diacetyl-$\alpha$-L-rhamnopyranoside)], and 3',4'-O-diacetylafzelin (8), kaempferol-3-O-(3,4-O-diacetyl-$\alpha$-L-rhamnopyranoside)]. The structures of 1-8 were identifed by analysis of spectroscopic data as well as by comparison with published values. This is the first report on the isolation of compounds 1-3 from this plant.

In vitro Activity of Kaempferol Isolated from the Impatiens balsamina alone and in Combination with Erythromycin or Clindamycin against Propionibacterium acnes

  • Lim, Young-Hee;Kim, In-Hwan;Seo, Jung-Ju
    • Journal of Microbiology
    • /
    • v.45 no.5
    • /
    • pp.473-477
    • /
    • 2007
  • The in vitro antibacterial activity against antibiotic-resistant Propionibacterium acnes of kaempferol isolated from the Impatiens balsamina alone and in combination with erythromycin or clindamycin antibiotics was investigated. The antibiotic combination effect against antibiotic-resistant P. acnes was studied by checkerboard test. Kaempferol and quercetin demonstrated antibacterial activities against P. acnes. Minimum inhibitory concentrations (MICs) for both compounds were ${\leq}32\;{\mu}g/ml\;and\;{\leq}64{\mu}g/ml$ for clindamycin-sensitive and -resistant P. acnes, respectively. The four combination formulations (kaempferol and either erythromycin or clindamycin; quercetin and either erythromycin or clindamycin) exhibited a synergic inhibition of P. acnes growth. The combination of kaempferol with quercetin showed an indifferent effect. The combination of clindamycin with kaempferol or quercetin showed a greater synergic effect than that of erythromycin with kaempferol or quercetin. Thus, these combinations demonstrated the potential to treat acne.

Inhibitory Effect of Kaempferol on Apoptosis Induced by Phorbol Ester via the Reduction of ROS in Normal Human Dermal Fibroblast

  • Park, Su-Ji;Lee, Sei-Jung
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2020.10a
    • /
    • pp.219-219
    • /
    • 2020
  • Kaempferol (3,4',5,7-tetrahydroxyflavone), a flavonoid found in beans, broccoli, garlic, etc., has been used in natural medicine as an anti-inflammatory and antioxidant. This experiment was carried out to evaluate the anti-apoptotic effect of kaempferol in 12-O-tetradecanoylphorbol 13-acetate (TPA)-treated Normal Human Dermal Fibroblast (NHDF). Kaempferol inhibited the production of intracellular Reactive Oxygen Species (ROS) induced by TPA in NHDF. Kaempferol significantly blocks the phosphorylation of extracellular signal-regulated kinase responsible for the activation of nuclear factor-kappa B. In addition, kaempferol significantly attenuated the expression of Bax and cleaved caspase-3 as regulated by the phosphorylation of nuclear factor-kappa B during its blockage of TPA-induced apoptotic cell death. These findings suggest that kaempferol protects the apoptotic signaling pathway induced by TPA through modulating intracellular ROS in NHDF.

  • PDF

The Effects of the 3-OH Group of Kaempferol on Interfollicular Epidermal Stem Cell Fate

  • Chae, Je Byeong;Choi, Hye-Ryung;Shin, Jung-Won;Na, Jung-Im;Huh, Chang-Hun;Park, Kyoung-Chan
    • Annals of dermatology
    • /
    • v.30 no.6
    • /
    • pp.694-700
    • /
    • 2018
  • Background: Kaempferol (3,4',5,7-tetrahydroxyflavone) is a flavonoid known to have a wide range of pharmacological activities. The 3-OH group in flavonoids has been reported to determine antioxidant activities. Objective: We tested whether kaempferol can affect the expression of integrins and the stem cell fate of interfollicular epidermal stem cells. Methods: Skin equivalent (SE) models were constructed, and the expression levels of stem cell markers and basement membrane-related antigens were tested. The immunohistochemical staining patterns of integrins, p63, and proliferating cell nuclear antigen (PCNA) were compared between kaempferol- and apigenin-treated SE models. Reverse transcription-polymerase chain reaction (RT-PCR) was used to evaluate the mRNA expression of integrins. Results: Kaempferol increased the thickness of the epidermis when added to prepare SEs. In addition, the basal cells of kaempferol-treated SEs appeared more columnar. In the immunohistological study, the expression of integrins ${\alpha}6$ and ${\beta}1$ and the numbers of p63- and PCNA-positive cells were markedly higher in the kaempferol-treated model. However, apigenin showed no effects on the formation of three-dimensional skin models. RT-PCR analysis also confirmed that kaempferol increased the expression of integrin ${\alpha}6$ and integrin ${\beta}1$. Conclusion: Our findings indicated that kaempferol can increase the proliferative potential of basal epidermal cells by modulating the basement membrane. In other words, kaempferol can affect the fate of interfollicular epidermal stem cells by increasing the expression of both integrins ${\alpha}6$ and ${\beta}1$. These effects, in particular, might be ascribed to the 3-OH group of kaempferol.