• Title/Summary/Keyword: key image

Search Result 1,381, Processing Time 0.034 seconds

Image Scale Prediction Using Key-point Clusters on Multi-scale Image Space (다중 스케일 영상 공간에서 특징점 클러스터를 이용한 영상스케일 예측)

  • Ryu, kwon-Yeal
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • In this paper, we propose the method to eliminate repetitive processes for key-point detection on multi-scale image space. The proposed method detects key-points from the original image, and select a good key-points using the cluster filters, and create the key-point clusters. And it select reference objects by using direction angles of the key-point clusters, predict the scale of the original image by using the distributed distance ratio. It transform the scale of the reference image, and apply the detection of key-points to the transformed reference image. In the results of the experiment, the proposed method can be found to improve the key-points detection time by 75 % and 71 % compared to SIFT method and scaled ORB method using the multi-scale images.

Optical Image Hiding Technique using Real-Valued Decoding Key (실수값 복원키를 이용한 광 영상 은닉 기술)

  • Cho, Kyu-Bo;Seo, Dong-Hoan;Choi, Eun-chang
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.3
    • /
    • pp.168-173
    • /
    • 2011
  • In this paper, an optical image hiding technique using real-valued decoding key is proposed. In the embedding process, a each zero-padded original image placed in a quadrants on an input plane is multiplied by a statistically independent random phase pattern and is Fourier transformed. An encoded image is obtained by taking the real-valued data from the Fourier transformed image. And then a phase-encoded pattern, used as a hidden image and a decoding key, is generated by the use of multiple phase wrapping from the encoded images. A transmitted image is made from the linear superposition of the weighted hidden images and a cover image. In reconstruction process, the mirror reconstructed images can be obtained at two quadrants by the inverse-Fourier transform of the product of the transmitted image and the decoding key. Computer simulation and optical experiment are demonstrated in order to confirm the proposed technique.

Joint-transform Correlator Multiple-image Encryption System Based on Quick-response Code Key

  • Chen, Qi;Shen, Xueju;Cheng, Yue;Huang, Fuyu;Lin, Chao;Liu, HeXiong
    • Current Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.320-328
    • /
    • 2019
  • A method for joint-transform correlator (JTC) multiple-image encryption based on a quick-response (QR) code key is proposed. The QR codes converted from different texts are used as key masks to encrypt and decrypt multiple images. Not only can Chinese text and English text be used as key text, but also symbols can be used. With this method, users have no need to transmit the whole key mask; they only need to transmit the text that is used to generate the key. The correlation coefficient is introduced to evaluate the decryption performance of our proposed cryptosystem, and we explore the sensitivity of the key mask and the capability for multiple-image encryption. Robustness analysis is also conducted in this paper. Computer simulations and experimental results verify the correctness of this method.

Side Information Extrapolation Using Motion-aligned Auto Regressive Model for Compressed Sensing based Wyner-Ziv Codec

  • Li, Ran;Gan, Zongliang;Cui, Ziguan;Wu, Minghu;Zhu, Xiuchang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.2
    • /
    • pp.366-385
    • /
    • 2013
  • In this paper, we propose a compressed sensing (CS) based Wyner-Ziv (WZ) codec using motion-aligned auto regressive model (MAAR) based side information (SI) extrapolation to improve the compression performance of low-delay distributed video coding (DVC). In the CS based WZ codec, the WZ frame is divided into small blocks and CS measurements of each block are acquired at the encoder, and a specific CS reconstruction algorithm is proposed to correct errors in the SI using CS measurements at the decoder. In order to generate high quality SI, a MAAR model is introduced to improve the inaccurate motion field in auto regressive (AR) model, and the Tikhonov regularization on MAAR coefficients and overlapped block based interpolation are performed to reduce block effects and errors from over-fitting. Simulation experiments show that our proposed CS based WZ codec associated with MAAR based SI generation achieves better results compared to other SI extrapolation methods.

Image Encryption and Decryption Using SA Algorithm and Optical Correlator System (SA 알고리듬과 광 상관 시스템을 이용한 영상 암호화 및 복호화)

  • 김철수;조창섭
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.3
    • /
    • pp.349-356
    • /
    • 2004
  • In this paper, a practical image security system using SA algorithm and 4-f optical correlator system is proposed. The encrypted image and key image with binary phase components are generated using an iterative SA algorithm. a decrypted image is found through the correlation of the encrypted and key images using 4-f optical correlator system. The encrypted and key images are consisted of binary phase components. So, it is easy to implement the optical security system using the proposed technique. And if we fix the encrypted image in the optical security system and change the key images, we get different images, so it is possible to apply to the distinguished authorization system using different key images. Computer simulations show that despite the binary phase components of the two images(encrypted and key image), decrypted images are generated.

  • PDF

Assessment of speckle image through particle size and image sharpness

  • Qian, Boxing;Liang, Jin;Gong, Chunyuan
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.659-668
    • /
    • 2019
  • In digital image correlation, speckle image is closely related to the measurement accuracy. A practical global evaluation criterion for speckle image is presented. Firstly, based on the essential factors of the texture image, both the average particle size and image sharpness are used for the assessment of speckle image. The former is calculated by a simplified auto-covariance function and Gaussian fitting, and the latter by focusing function. Secondly, the computation of the average particle size and image sharpness is verified by numerical simulation. The influence of these two evaluation parameters on mean deviation and standard deviation is discussed. Then, a physical model from speckle projection to image acquisition is established. The two evaluation parameters can be mapped to the physical devices, which demonstrate that the proposed evaluation method is reasonable. Finally, the engineering application of the evaluation method is pointed out.

Double Encryption of Binary Image using a Random Phase Mask and Two-step Phase-shifting Digital Holography (랜덤 위상 마스크와 2-단계 위상 천이 디지털 홀로그래피를 이용한 이진 영상 이중 암호화)

  • Kim, Cheolsu
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.6
    • /
    • pp.1043-1051
    • /
    • 2016
  • In this paper, double encryption technique of binary image using random phase mask and 2-step phase-shifting digital holography is proposed. After phase modulating of binary image, firstly, random phase mask to be used as key image is generated through the XOR operation with the binary phase image. And the first encrypted image is encrypted again through the fresnel transform and 2-step phase-shifting digital holography. In the decryption, simple arithmetic operation and inverse Fresnel transform are used to get the first decryption image, and second decryption image is generated through XOR operation between first decryption image and key image. Finally, the original binary image is recovered through phase modulation.

The fast image encryption algorithm based on substitution and diffusion

  • Zhang, Yong;Jia, Xiaoyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4487-4511
    • /
    • 2018
  • A fast image encryption system based on substitution and diffusion was proposed, which includes one covering process, one substitution process and two diffusion processes. At first, Chen's chaotic system together with an external 256-bit long secret key was used to generate the key streams for image encryption, in which the initial values of Chen's chaotic system were regarded as the public key. Then the plain image was masked by the covering process. After that the resulting image was substituted with the disturbed S-Box of AES. Finally, the substituted image was diffused twice with the add-modulo operations as the core to obtain the cipher image. Simulation analysis and comparison results with AES and some existing image cryptosystems show that the proposed image cryptosystem possesses the merits of fast encryption/decryption speed, good statistical characteristics, strong sensitivity and etc., and can be used as a candidate system of network security communication.

Improvement of DCT-based Watermarking Scheme using Quantized Coefficients of Image (영상의 양자화 계수를 이용한 DCT 기반 워터마킹 기법)

  • Im, Yong-Soon;Kang, Eun-Young;Park, Jae-Pyo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.17-22
    • /
    • 2014
  • Watermarking is one of the methods that insist on a copyright as it append digital signals in digital informations like still mobile image, video, other informations. This paper proposed an improved DCT-based watermarking scheme using quantized coefficients of image. This process makes quantized coefficients through a Discrete Cosine Transform and Quantization. The watermark is embedded into the quantization coefficients in accordance with location(key). The quantized watermarked coefficients are converted to watermarked image through the inverse quantization and inverse DCT. Watermark extract process only use watermarked image and location(key). In watermark extract process, quantized coefficients is obtained from watermarked image through a DCT and quantization process. The quantized coefficients select coefficients using location(key). We perform it using inverse DCT and get the watermark'. Simulation results are satisfied with high quality of image (PSNR) and Normalized Correlation(NC) from the watermarked image and the extracted watermark.

Image Encryption with The Cross Diffusion of Two Chaotic Maps

  • Jiao, Ge;Peng, Xiaojiang;Duan, Kaiwen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.1064-1079
    • /
    • 2019
  • Information security has become increasingly important with the rapid development of mobile devices and internet. An efficient encryption system is a key to this end. In this paper, we propose an image encryption method based on the cross diffusion of two chaotic maps. We use two chaotic sequences, namely the Logistic map and the Chebyshev map, for key generation which has larger security key space than single one. Moreover, we use these two sequences for further image encryption diffusion which decreases the correlation of neighboring pixels significantly. We conduct extensive experiments on several well-known images like Lena, Baboon, Koala, etc. Experimental results show that our algorithm has the characteristics of large key space, fast, robust to statistic attack, etc.