• Title/Summary/Keyword: kinetics

Search Result 3,968, Processing Time 0.032 seconds

Kinetics of the Formation of Metalloporphyrins and the Catalytic Effect of Lead Ions and Hydrogen Ions

  • Qi, Yong;Pan, Ji Gang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3313-3318
    • /
    • 2014
  • The reaction mechanism of Lead ions catalyzing complexation reactions between TIPP and metal ions was investigated by researching the kinetics of the formation of metalloporphyrins by UV/Vis-spectra, and verified by exploring the formation of metalloporphyrins catalyzed by acetic acid. Kinetics studies suggested that the fluctuations of reaction rate indicated the formation of metalloporphyrin was step-wise, including the pre-equilibrium step (the coordination of the pyrrolenine nitrogens to $Mn^+$) and the rate-controlling step (the deprotonation of the pyrrole proton). In the pre-equalization step, a sitting-atop (SAT) structure formed first with the complexation between larger radius of $Pb^{2+}$ and TIPP, changed the activation, then $Pb^{2+}$ left with the smaller radius of metal ions attacking from the back of the porphyrin ring center. In the rate-controlling step, two pyrrole protons dissociated to restore a stable structure. This was verified by adding acetic acid at different reaction times.

Oxidation Kinetics of Pitch Based Carbon Fibers

  • Roh, Jae-Seung
    • Carbon letters
    • /
    • v.9 no.2
    • /
    • pp.121-126
    • /
    • 2008
  • High modulus pitch based carbon fibers (HM) were exposed to isothermal oxidation using tube furnace in carbon dioxide gas to study the oxidation kinetics under the temperature of $800-1100^{\circ}C$. The kinetic equation $f=1-{\exp}(-at^b)$ was introduced and the constant b was obtained in the range of 1.02~1.42. The oxidation kinetics were evaluated by the reaction-controlling regime (RCR) depending upon the apparent activation energies with the conversion increasing from 0.2 to 0.8. The activation energies decrease from 24.7 to 21.0 kcal/mole with the conversion increasing from 0.2 to 0.8, respectively. According to the RCR, the reaction was limited by more diffusion controlling regime for the HM fibers with the conversion increasing. Therefore, it seems that the oxidation which is under the diffusion controlling regime takes place continuously from the skin to the core of the fiber.

Kinetics of Initial Water Vapor Adsorption by Inonotus obliquus Mushroom Powders

  • Lee, Min-Ji;Seog, Eun-Ju;Lee, Jun-Ho
    • Preventive Nutrition and Food Science
    • /
    • v.12 no.2
    • /
    • pp.111-114
    • /
    • 2007
  • Water vapor adsorption kinetics of Inonotus mushroom powders were investigated in temperature and water activity ranges of 20 to 40$^{\circ}C$ and 0.30 to 0.81, respectively. Initial water vapor adsorption rate of mushroom powders increased with increases in temperature and water activity. The temperature dependency of water activity followed the Clausius-Clapeyron equation. The net isosteric heat of sorption increased with an increase in water activity. Water vapor adsorption kinetics of the mushroom powders can be well described by a simple empirical model. Temperature dependency of the reaction rate constant followed the Arrhenius relationship. The activation energy ranged from 56.86 to 91.35 kJ/mol depending on water activity. Kinetic compensation relationship was observed between k$_o$ and E$_a$ with the isokinetic temperature of 790.27 K.

Oxidation Kinetics of Carbon Fibers

  • Roh, Jae-Seung
    • Carbon letters
    • /
    • v.6 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • Isotropic pitch based carbon fibers were exposed to isothermal oxidation in carbon dioxide gas to study the activation kinetics under the temperature of 800~$1100^{\circ}C$. The kinetic equation $f=1-{\exp}(-at^b)$ was introduced and the constant b was obtained in the range of 0.92~1.25. It was shown that the activated carbon fiber shows the highly specific surface area (SSA) when the constant b comes close to 1. The activation kinetics were evaluated by the reaction-controlling regime (RCR) according to changes of the apparent activation energy with changes of the conversion. It was observed that the activation energies increase from 47.6 to 51.2 kcal/mole with the conversion increasing from 0.2 to 0.8. It was found that the pores of the activated carbon fiber under the chemical reaction were developed well through the fiber.

  • PDF

The Sigmoid Kinetics of Mass-action and Photosynthesis based on Influx and Efflux in a Plant Bio-system (유출입의 원리에 의한 물질대사와 광합성능에 관한 동력학적 연구)

  • 장남기
    • The Korean Journal of Ecology
    • /
    • v.1 no.1
    • /
    • pp.3-10
    • /
    • 1977
  • The sigmoiod kinetics of mass-action in a biosystem have been studied by theoretical bases on the carrier hypothesis of influx and efflux of substrates. The sigmoid kinetic equations of assimilation and dissimilation rates indicate that each trophicfactor and each bio-factor behave according to the sigmoid kinetic equation and the bell shape case, and all of them are multiplicative. The general sigmoid kinetics of mass-action is given by the equation (30) which is determined by the total of the equation (28) of the assimilation rate and the equation (29) of the dissimilation rate. The sigmoid kinetic model of photosynthesis has been derived from the general equation of the sigmoid kinetics of mass-action.

  • PDF

Analysis of the Pultrusion Process of Thermosetting Composites Containing Volatiles (휘발물질이 존재하는 열경화성수지 복합재료의 Pultrusion 공정 해석)

  • 김대환;이우일;김병선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.527-536
    • /
    • 1995
  • Analysis of pultrusion process for the thermosetting composites containing volatiles was performed. Degree of cure, amount of volatile evolved and pulling force were calculated for the processing variables such as die temperature and pulling speed. Cure kinetics was modeled from the data obtained by DSC(Differential Scanning Calorimeter). The volatile evolution kinetics was modeled from the data by DSC as well as TGA(Thermo Gravimetric Analyzer). The cure kinetics and volatile evolution kinetics models were incorporated into the energy equation. The resulting governing equation was solved using finite element method. Pulling force was calculated through the analysis of pressure developed inside the pultrusion die. Experiments were performed and the data were compared with the calculated results. Good agreements were observed.

Solid Phase Crystallization Kinetics of Amorphous Silicon at High Temperatures

  • Hong, Won-Eui;Kim, Bo-Kyung;Ro, Jae-Sang
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.2
    • /
    • pp.48-50
    • /
    • 2008
  • Solid phase crystallization (SPC) of amorphous silicon is usually conducted at around $600^{\circ}C$ since it is used in the application of flat panel display using thermally susceptible glass substrate. In this study we conducted SPC experiments at temperatures higher than $600^{\circ}C$ using silicon wafers. Crystallization rate becomes dramatically rapid at higher temperatures since SPC kinetics is controlled by nucleation with high value of activation energy. We report SPC kinetics of high temperatures compared to that of low temperatures.

Hydrolysis of Oils by Using Immobilized Lipase Enzyme : A Review

  • Murty, V.Ramachanda;Bhat, Jayadev;Muniswaran, P.K.A.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.2
    • /
    • pp.57-66
    • /
    • 2002
  • This review focuses on the use of immobilized lipase technology for the hydrolysis of oils. The importance of lipase catalyzed fat splitting process, the various immobilization procedures, kinetics, deactivation kinetics, New immobilized lipases for chiral resolution, reactor configurations, and process considerations are all reviewed and discussed.

Reaction Kinetics for the Synthesis of Oligomeric Poly (lactic acid)

  • Yoo Dong Keun;Kim Dukjoon;Lee Doo Sung
    • Macromolecular Research
    • /
    • v.13 no.1
    • /
    • pp.68-72
    • /
    • 2005
  • A low-molecular-weight poly(lactic acid) was synthesized through the condensation reaction of L-lactic acid. The effects that the catalyst and temperature have on the reaction rate were studied to determine the optimum reaction conditions. The reaction kinetics increased with temperature up to $210^{\circ}C$, but no further increase was observed above this temperature. Among a few selective catalysts, sulfuric acid was the most effective because it maximized the polymerization reaction rate. Reduction of the pressure was another important factor that enhanced this reactions kinetics.

In-situ Structure Modification of W powder Skeleton and related Cu Infiltration Kinetics in W-Cu (W-Cu 계에서 W 분말골격의 in-situ 구조 변화와 Cu의 용침 kinetics)

  • 이재성
    • Journal of Powder Materials
    • /
    • v.6 no.1
    • /
    • pp.36-41
    • /
    • 1999
  • The present work has attempted to investigate the dependence of Cu infiltration kinetics on in-situ structure modification of W powder skeleton in W-Cu system. In-situ structure modification of W skeleton by addition of 0.3wt%Ni-P eutectic alloy was designed to proceed during heat-up of the W compact for Cu infiltration process. It was found that the Ni-P added W skeleton underwent remarkable stucture change only during heating-up. its structure was composed of large necks of W particles above 0.5 in the ratio of neck to particle size and smooth pore channels. The infiltration experiment showed that the infiltration kinetics for the W-Ni-P followed well the linear relationship of h vs. $t^{1/2}$ the rate constant K of which was in good agreement with the theoretical value. On the other hand, in case of the pure W skeleton a lower K value by 20% than the theoretical one was obatined. Such discrepancy is discussed in terms of skeleton structure induced infiltration mechanics.

  • PDF