• 제목/요약/키워드: kinetics

검색결과 3,967건 처리시간 0.026초

상수처리시 Fe(III) 응집제를 이용한 응집동력학에 관한 연구 : 황산이온의 영향 (Flocculation Kinetics Using Fe(III) Coagulant in Advanced Water Treatment: The Effect of Sulfate Ion)

  • 강임석;이병헌
    • 한국환경과학회지
    • /
    • 제4권4호
    • /
    • pp.367-377
    • /
    • 1995
  • 상수처리시 응집동역학에 관한 연구를 수행하기 위하여 $FE(NO_3)$$_3.9H_2O$을 응집제로 사용하여 Kaolin현탁액을 응집시키는 실험을 행하였다. 응집 동력학은 응집과정중 입자크기의 증가 을 측정하는 것으로서 응집의 mechanism에 대한 이해와 응집시 사용되는 최적 응집제의 량과 종류 그리고 최적 pH를 선정하는데 효과적으로 사용될 수 있다. 본 실험에서는 기본적 응집동력학에 대한 연구를 토대로 수중의 황산이온이 응집동력학에 미치는 영향에 대하여 고찰하였다. 본 실험에 사용된 각 실험조건들은 일련의 Jar Tests를 통하여 선정되었으며 상수처리시 제기될 수 있는 광범위한 탁도와 pH를 포함하고자 하였다. 본 연구에서는 응집 동력학을 측정하기 위하여 '자동영상분석계(AIA)' 를 이용하여 응집과정중의 입자와 크기분포와 '관상란분석계(PDA)' 를 이용한 응집과정중의 탁도변화에 관한 자료를 상호 비교하였다. 본 실험에서 도출된 결과에 의하면, Kaolin현탁물에 가해진 $10^{-3}M$의 황산이온은 응집과정에 상당히 큰 영향을 초래하였으며 응집된 입자표면의 전위(zeta potential)변하ㅗ에 큰 영향을 주는 것으로 밝혀졌다. 응집과정에 가해진 황산이온은 약산성($\le$ pH 6.8)에서의 응집과정을 크게 향상시키는 것으로 나타났다. 응집 동력학의 효율증진은 황산이온이 첨가됨으로 인하여 FE(III)침전물 형성율의 촉진에 기인한 수중입자의 충돌빈도의 증가에 의한 것으로 규명 되어졌다규명 되어졌다

  • PDF

Dependence of an Interfacial Diels-Alder Reaction Kinetics on the Density of the Immobilized Dienophile: An Example of Phase-Separation

  • Min, Kyoung-Mi;Jung, Deok-Ho;Chae, Su-In;Kwon, Young-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권5호
    • /
    • pp.1679-1684
    • /
    • 2011
  • Interfacial reactions kinetics often differ from kinetics of bulk reactions. Here, we describe how the density change of an immobilized reactant influences the kinetics of interfacial reactions. Self-assembled monolayers (SAMs) of alkanethiolates on gold were used as a model interface and the Diels-Alder reaction between immobilized quinones and soluble cyclopentadiene was used as a model reaction. The kinetic behavior was studied using varying concentrations of quinones. An unusual threshold density of quinones (${\Gamma}_c$ = 5.2-7.2%), at which the pseudo-first order rate constant started to vary as the reaction progressed, was observed. This unexpected kinetic behavior was attributed to the phase-separation phenomena of multi-component SAMs. Additional experiments using more phase-separated two-component SAMs supported this explanation by revealing a significant decrease in ${\Gamma}_c$ values. When the background hydroxyl group was replaced with carboxylic or phosphoric acid groups, ${\Gamma}_c$ was observed at below 1%. Also, more phase-separated thermodynamically controlled SAMs produced a lower critical density (3% < ${\Gamma}_c$ < 4.9%) than that of the less phaseseparated kinetically controlled SAMs (6.5% < ${\Gamma}_c$ < 8.9%).

The Influence of High-heeled Shoes on Kinematics and Kinetics of the Knee Joint during Sit-to-stand task

  • Park, Ji-Won;Kim, Yun-Jin
    • The Journal of Korean Physical Therapy
    • /
    • 제27권5호
    • /
    • pp.304-310
    • /
    • 2015
  • Purpose: The purpose of this study was to examine the change in the kinematics and kinetics of the knee joint depending on high-heeled shoes during sit-to-stand (SitTS) task. Methods: Nineteen healthy females participated in this study. The subjects performed the SitTS task wearing high-heeled shoes and barefoot. The experiment was repeated three times for each task with foot conditions. The kinematics and kinetics of the knee joint were measured and analyzed using a 3D motion analysis system. Results: The result of this study showed kinematic and kinetics differences in knee joints during the SitTS task based on high-heeled shoes. Significant differences in knee flexion angle were observed during SitTS. The knee extensor force showed statistically significant differences during SitTS tasks. At the initial of SitTS, the knee flexor and extensor moment showed significant differences. The knee extensor moment showed statistically significant differences at the terminal of SitTS. At the maximum of SitTS, the knee extensor moment showed statistically significant differences. Conclusion: Therefore, wearing high-heeled shoes during SitTS movements in daily life is considered to influence knee joint kinematics and kinetics due to the HH, suggesting the possibility of increased risk of patellofemoral pain, and knee osteoarthritis caused by changes in loading of the knee joint.

Quantitative Polymerase Chain Reaction for Microbial Growth Kinetics of Mixed Culture System

  • Cotto, Ada;Looper, Jessica K.;Mota, Linda C.;Son, Ahjeong
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권11호
    • /
    • pp.1928-1935
    • /
    • 2015
  • Microbial growth kinetics is often used to optimize environmental processes owing to its relation to the breakdown of substrate (contaminants). However, the quantification of bacterial populations in the environment is difficult owing to the challenges of monitoring a specific bacterial population within a diverse microbial community. Conventional methods are unable to detect and quantify the growth of individual strains separately in the mixed culture reactor. This work describes a novel quantitative PCR (qPCR)-based genomic approach to quantify each species in mixed culture and interpret its growth kinetics in the mixed system. Batch experiments were performed for both single and dual cultures of Pseudomonas putida and Escherichia coli K12 to obtain Monod kinetic parameters (μmax and Ks). The growth curves and kinetics obtained by conventional methods (i.e., dry weight measurement and absorbance reading) were compared with that obtained by qPCR assay. We anticipate that the adoption of this qPCR-based genomic assay can contribute significantly to traditional microbial kinetics, modeling practice, and the operation of bioreactors, where handling of complex mixed cultures is required.

Isoconversional Cure Kinetics of Modified Urea-Formaldehyde Resins with Additives

  • Park, Byung-Dae
    • Current Research on Agriculture and Life Sciences
    • /
    • 제30권1호
    • /
    • pp.41-50
    • /
    • 2012
  • As a part of abating formaldehyde emission of urea-formaldehyde resin, this study was conducted to investigate the rmalcure kinetics of both neat and modified urea-formaldehyde resins using differential scanning calorimetry. Neat urea-formaldehyde resins with three different formaldehyde/urea mol ratios (1.4, 1.2 and 1.0) were modified by adding three different additives (sodium bisulfite, sodium hydrosulfite and acrylamide) at two different levels (1 and 3wt%). An isoconversional method at four different heating rates was employed to characterize thermal cure kinetics of these urea-formaldehyde resins to obtain activation energy ($E{\alpha}$) dependent on the degree of conversion (${\alpha}$). The $E{\alpha}$ values of neat urea-formaldehyde resins (formaldehyde/urea = 1.4 and 1.2) consistently changed as the ${\alpha}$ increased. Neat and modified urea-formaldehyde resins of these two F/U mol ratios did show a decrease of the $E{\alpha}$ at the final stage of the conversion while the $E{\alpha}$ of neat urea-formaldehyde resin (formaldehyde/urea = 1.0) increased as the ${\alpha}$ increased, indicating the presence of incomplete cure. However, the change of the $E{\alpha}$ values of all urea-formaldehyde resins was consistent to that of the Ea values. The isoconversional method indicated that thermal cure kinetics of neat and modified urea-formaldehyde resins showed a strong dependence on the resin viscosity as well as diffusion control reaction at the final stage of the conversion.

  • PDF

Decolorization kinetics and characteristics of the azo dye acid red 18 in MSBR system at various HRTs and SRTs

  • Zonoozi, M. Hasani;Moghaddam, M.R. Alavi;Maknoon, R.
    • Membrane and Water Treatment
    • /
    • 제5권4호
    • /
    • pp.281-293
    • /
    • 2014
  • The present work aimed to study the decolorization kinetics and characteristics of a selected azo dye under the influence of two key operational parameters including hydraulic retention time (HRT) and solid retention time (SRT). The decolorization efficiency and the two important criteria of k and normalized k (k/MLSS) were evaluated in lab-scale membrane sequencing batch reactors (MSBRs) at various HRTs of 48, 24 and 16 h (with constant SRT) and in addition, at various SRTs of infinity, 40 and 10 d (with constant HRT). According to the obtained results, both zero and first-order kinetics were properly fitted the decolorization profiles of the selected azo dye in all of the applied HRTs and SRTs. Increase of both HRT and SRT positively affected the decolorization efficiency. More MLSS concentrations corresponded to the lower HRTs and the higher SRTs resulted in higher decolorization rate constants (k). However, the effect of reducing the HRT was not compensated by increase of the MLSS concentration in order to reach higher decolorization efficiency. In addition, increase of the decolorization efficiency, as a consequence of the higher MLSS concentrations at longer SRTs, was restrained by decrease of the time-limited decolorization capability of biomass (represented by normalized k). Evaluation of both k and normalized k is suggested in order to have a more precise study on the decolorization kinetics and characteristics.

Palm Oil Mill Effluent 처리 시 Anaerobic Hybrid Reactor의 기질 제거 Kinetics 비교 (A Comparison of Substrate Removal Kinetics of Anaerobic Reactor systems treating Palm Oil Mill Effluent)

  • 오대양;신창하;김태훈;박주양
    • 상하수도학회지
    • /
    • 제25권6호
    • /
    • pp.971-979
    • /
    • 2011
  • Palm Oil Mill Effluent (POME) is the mixed organic wastewater generated from palm oil industry. In this study, kinetic analysis with treating POME in an anaerobic hybrid reactor (AHR) was performed. Therefore, the AHR was monitored for its performances with respect to the changes of COD concentrations and hydraulic retention time (HRT). Batch tests were performed to find out the substrate removal kinetics by granular sludge from POME. Modified Stover Kincannon, First-order, Monod, Grau second-order kinetic models were used to analyze the performance of reactor. The results from the batch test indicate that the substrate removal kinetics of granular sludge is corresponds to follow Monod's theory. However, Grau second-order model were the most appropriate models for the continuous test in the AHR. The second order kinetic constant, saturation value constant, maximum substrate removal rate, and first-order kinetic constant were 2.60/day, 41.905 g/L-day, 39.683 g/L-day, and 1.25/day respectively. And the most appropriate model was Grau second-order kinetic model comparing the model prediction values and measured COD concentrations of effluent, whereas modified Stover-Kincannon model showed the lowest correlation.

Kinetics of water vapor adsorption by vacuum-dried jujube powder

  • Lee, Jun Ho;Zuo, Li
    • 한국식품저장유통학회지
    • /
    • 제24권4호
    • /
    • pp.505-509
    • /
    • 2017
  • Water vapor adsorption kinetics of vacuum-dried jujube powder were investigated in temperature and relative humidity ranges of 10 to $40^{\circ}C$ and 32 to 75%, respectively. Water vapor was initially adsorbed rapidly and then reached equilibrium condition slowly. Reaction rate constant for water vapor adsorption of vacuum-dried jujube powder increased with an increase in temperature. The temperature dependency of water activity followed the Clausius-Clapeyron equation. The net isosteric heat of sorption increased with an increase in water activity. Good straight lines were obtained with plotting of $1/(m-m_0)$ vs. 1/t. It was found that water vapor adsorption kinetics of vacuum-dried jujube powder was accurately described by a simple empirical model, and temperature dependency of the reaction rate constant followed the Arrhenius-type equation. The activation energy ranged from 50.90 to 56.00 kJ/mol depending on relative humidity. Arrhenius kinetic parameters ($E_a$ and $k_0$) for water vapor adsorption by vacuum-dried jujube powder showed an effect between the parameters with the isokinetic temperature of 302.51 K. The information on water vapor adsorption kinetics of vacuum-dried jujube powder can be used to establish the optimum condition for storage and processing of jujube.

Comparison of Bioleaching Kinetics of Spent Catalyst by Adapted and Unadapted Iron & Sulfur Oxidizing Bacteria - Effect of Pulp Density; Particle Size; Temperature

  • Pradhan, Debabrata;Kim, Dong-Jin;Ahn, Jong-Gwan;Gahan, Chandra Sekhar;Chung, Hun-Saeng;Lee, Seoung-Won
    • 대한금속재료학회지
    • /
    • 제49권12호
    • /
    • pp.956-966
    • /
    • 2011
  • Bioleaching studies of metals from a spent catalyst were conducted using both adapted and unadapted bacterial cultures. The bacterium used in this experiment was Acidithiobacillus ferrooxidans. A comparison of the kinetics of leaching was made between the two cultures by varying the leaching parameters, including the pulp density, particle size and temperature. Both cultures showed similar effects with respect to the above parameters, but the leaching rates of all metals were higher with the adapted compared to the unadapted bacterial cultures. The leaching reactions were continued for 240 h in the case of the unadapted bacterial culture, but only for 40 h in the case of the adapted bacterial culture. The leaching reactions followed first order kinetics. In addition, the kinetics of leaching was concluded to be a diffusion control model; therefore, the product layers were impervious.

Kinetics of nitrification and acrylamide biodegradation by Enterobacter aerogenes and mixed culture bacteria in sequencing batch reactor wastewater treatment systems

  • Madmanang, Romsan;Jangkorn, Siriprapha;Charoenpanich, Jittima;Sriwiriyarat, Tongchai
    • Environmental Engineering Research
    • /
    • 제24권2호
    • /
    • pp.309-317
    • /
    • 2019
  • This study evaluated the kinetics of acrylamide (AM) biodegradation by mixed culture bacteria and Enterobacter aerogenes (E. aerogenes) in sequencing batch reactor (SBR) systems with AQUASIM and linear regression. The zero-order, first-order, and Monod kinetic models were used to evaluate the kinetic parameters of both autotrophic and heterotrophic nitrifications and both AM and chemical oxygen demand (COD) removals at different AM concentrations of 100, 200, 300, and 400 mg AM/L. The results revealed that both autotrophic and heterotrophic nitrifications and both AM and COD removals followed the Monod kinetics. High AM loadings resulted in the transformation of Monod kinetics to the first-order reaction for AM and COD removals as the results of the compositions of mixed substrates and the inhibition of the free ammonia nitrogen (FAN). The kinetic parameters indicated that E. aerogenes degraded AM and COD at higher rates than mixed culture bacteria. The FAN from the AM biodegradation increased both heterotrophic and autotrophic nitrification rates at the AM concentrations of 100-300 mg AM/L. At higher AM concentrations, the FAN accumulated in the SBR system inhibited the autotrophic nitrification of mixed culture bacteria. The accumulation of intracellular polyphosphate caused the heterotrophic nitrification of E. aerogenes to follow the first-order approximation.