• 제목/요약/키워드: lactate

검색결과 1,706건 처리시간 0.032초

나노여과를 이용한 Sodium Lactate의 회수 (Recovery of Sodium Lactate Using Nanofiltration)

  • 이은교;강상현;장용근;장호남
    • 한국미생물·생명공학회지
    • /
    • 제27권4호
    • /
    • pp.320-326
    • /
    • 1999
  • The effects of operating pressure, lactate concentration, impurities, and pH on solution flux and lactate rejection in nanofiltration were investigated with model sodium lactate solutions (lactate 10~200g/L) as a model system. In the tested range of pressure(80~140 psig), the solution flux was observed to be proportional to the operating pressure and the rejection of lactate increased only slightly with the pressure. Both of the flux and the rejection decreased with lactate concentration, while the recovery rate of lactate increased. The effects of glucose and yeast extract as impurities on lactate rejection were negligible, but the flux decreased significantly with the addition of yeast extract. At low lactate concentrations, the rejection of lactate increased with pH due to the increased repulsion (Donnan exclusion effect) between lactate ions and membrane surface. But, at high lactate concentrations, the donnan effect was observed to be overwhelmed by the effect of sodium ions added to adjust the pH, and the rejection of lactate decreased with pH. When fermentation broth containing about 89g/L of lactate was nanofiltered, the flux and the rejection of lactate were 2.8L/$m^2$h and 5%, respectively at 120psig. Both of them were slightly lower than those with model solutions. The recovery rate was 2.6mol/$m^2$h.

  • PDF

액체크로마토그래프-탠덤질량분석기(LC-MS/MS)를 이용한 소변 내 D-, L- Lactate 분리 및 정량 (Simultaneous Quantification of Urinary L-, and D-Lactate by Reversed-Phase Liquid Chromatography Tandem Mass Spectrometry)

  • 문철진;양송현
    • 대한유전성대사질환학회지
    • /
    • 제15권2호
    • /
    • pp.59-64
    • /
    • 2015
  • 사람의 신체내에서 주로 존재하는 lactate는 L-lactate로서 몇몇 선천성대사이상과 관련하여 증가된다. 최근 2형 당뇨병(type 2 diabetes)과 만성적인 염증성 위장질환(inflammatory bowel disease)과 관련하여 증가되는 D-lactate를 L-lactate와 분리해야 하는 요구도가 높아졌다. 이에 액체크로마토그래프-탠덤질량 분석기를 사용하여 소변 내 D-, L-lactate를 분리하는 방법을 확립하였으며, 분석시간과 정밀성, 정확성, 특이성 등에서 신뢰성 있는 방법임을 확인하였다.

Lactate Can Modulate the Expression of Lactate Dehydrogenase and Aquaporin Genes in Mouse Preimplanation Embryos

  • Shin, Soo-Jung;Cheon, Yong-Pil
    • 한국발생생물학회지:발생과생식
    • /
    • 제16권3호
    • /
    • pp.219-226
    • /
    • 2012
  • It is suggested that carbohydrate metabolites may involve in the development of morula to blastocyst but many of the mechanisms are not unmasked. Two-cell stage embryos were collected and examined the effects of lactate on the development of blastocyst in vitro. The expression profiles of lactate dehydrognase (Ldh) genes and aquaporin (Aqp) genes were analyzed with RT-PCR. The successful development from morula to blastocyst was dependent on lactate concentrations. The expression profiles of Ldh genes were changed by the lactate concentration. Ldha was expressed in morula stage at 10 mM lactate, and in blastocyst stage at lactate free condition. Ldhb was expressed in morula stage at 10 mM and 20 mM lactate, and in blastocyst stage at 10 mM lactate. Aqp genes were also showed different expression patterns by the lactate concentrations. Aqp3 was expressed in hatching embryo at 120 hr post hCG administration (hph) which was cultured in BWW medium and lactate free condition. Aqp7 was expressed in hatching embryos at 120 hph which was cultured at 10 mM lactate condition. Also Aqp8 was expressed in hatching embryo at BWW and 20 mM lactate condition. Aqp9 was expressed in morula at BWW and 10 mM lactate condition, and in blastocyst at BWW. Based on these results, it is suggested that concentration of lactate in the medium and the level of lactate synthesis in embryo is critical factor for blastocoels formation. In addition it is suggested that LDH may involve the AQPs expression in embryos.

Preliminary Data on the Ratio of D(-)-Lactate and L(+)-Lactate Levels in Various Lactic Acid Bacteria as Evaluated using an Enzymatic Method

  • Song, Kwang-Young
    • Journal of Dairy Science and Biotechnology
    • /
    • 제40권1호
    • /
    • pp.15-22
    • /
    • 2022
  • This study evaluated the levels of D(-)-lactate and L(+)-lactate, and the ratio of D(-)-lactate to total lactate (D(-)-lactate + L(+)-lactate) of 15 lactic acid bacteria (LAB) using an enzymatic method. D(-)-lactate and L(+)-lactate levels in the LAB ranged from 0.31 to 13.9 mM and 0.76 to 39.3 mM, respectively, in Bifidobacterium sp.; 1.08 to 11.7 mM and 0.69-13.0 mM in Lactobacillus sp.; 0.72 to 20.3 mM and 0.98 to 32.3 mM in Leuconostoc sp., and 33.0 mM and 39.2 mM in Pediococcus acidilacti KCCM 11747. The ratio of the range of D(-)-lactic acid to total lactic acid was 28.98%-45.76% in Bifidobacterium sp., 41.18%-61.02% in Lactobacillus sp., 29.85%-42.36% in Leuconostoc sp., and 45.71% in P. acidilacti KCCM 11747. In the future, there is a need to test for D(-)-lactate in various fermented products to which different LAB have been added and study the screening of LAB used as probiotics that produce various concentrations of D(-)-lactate.

Lactate: a multifunctional signaling molecule

  • Lee, Tae-Yoon
    • Journal of Yeungnam Medical Science
    • /
    • 제38권3호
    • /
    • pp.183-193
    • /
    • 2021
  • Since its discovery in 1780, lactate has long been misunderstood as a waste by-product of anaerobic glycolysis with multiple deleterious effects. Owing to the lactate shuttle concept introduced in the early 1980s, a paradigm shift began to occur. Increasing evidence indicates that lactate is a coordinator of whole-body metabolism. Lactate is not only a readily accessible fuel that is shuttled throughout the body but also a metabolic buffer that bridges glycolysis and oxidative phosphorylation between cells and intracellular compartments. Lactate also acts as a multifunctional signaling molecule through receptors expressed in various cells and tissues, resulting in diverse biological consequences including decreased lipolysis, immune regulation, anti-inflammation, wound healing, and enhanced exercise performance in association with the gut microbiome. Furthermore, lactate contributes to epigenetic gene regulation by lactylating lysine residues of histones, accounting for its key role in immune modulation and maintenance of homeostasis.

헤마토크?????? 비율이 낮은 사람에 있어서 최대 산소 부채와 과잉젖산 사이의 관계 (Maximal Oxygen Debt, Lactate and Excess Lactate in Men with Low Hematocrit Ratio)

  • 김대성;남기용
    • The Korean Journal of Physiology
    • /
    • 제2권2호
    • /
    • pp.53-61
    • /
    • 1968
  • Maximal oxygen debt, lactate and excess lactate were measured in 13 men with low hematocrit ratio before and after maximal exercise. Maximal exercise run was performed on a treadmill and the duration of run was 2 minutes 45 seconds in each subject. Hematocrit ratio ranged between 35 and 47%, the mean being 39.8%. The following results were obtained. 1. Maximal oxygen debt expressed on basis of body weight increased as the hematocrit ratio decreased. The correlation coefficient between the two was r= -0.770. 2. The time necessary for decreasing to 50% of total maximal $O_2$ debt(half time) became longer as the hematocrit ratio decreased. In normal men the half time was about 4 minutes and at the longest it was 12 minutes in men with the lowest hematocrit ratio. 3. The lactate concentration reached its peak value after 3 minutes of recovery. Thereafter, the time course of decrease in lactate concentration coincided roughly with that of respiratory oxygen debt curve. To reach to the resting level, however, it took longer time than that of respiratory oxygen debt. 4. Resting concentrations of lactate was 1.28 mM/l, pyruvate 0.13 mM/l and L/P ratio was 9.8. Peak value of ${\Delta}L$ after exercise reached to the value of 10.4 mM/l and ${\Delta}L/P$ reached 26.0. Peak excess lactate after exercise was 6.34 mM/l. 5. The part of oxygen debt accounted for by the oxygen equivalent of excess lactate was only 38.4%. A better relationship between lactate and oxygen debt was observed and the part of oxygen debt accounted for by the oxygen equivalent of lactate was 63.3%. 6. Peak value of lactate after maximal exercise increased as the hematocrit ratio decreased. 7. Respiratory oxygen debt of 100 ml/kg was accounted for by lactate more than 60% and only 30% was by excess lactate. 8. Excess lactate was not a good index of respiratory oxygen debt.

  • PDF

회분식 반응 증류에 의한 lactic acid의 분리 특성 (Separation Characteristics of Lactic Acid by Batch Reactive Distillation)

  • 최종일;홍원희
    • KSBB Journal
    • /
    • 제14권2호
    • /
    • pp.220-224
    • /
    • 1999
  • 본 논문에서 회분식 반응 증류에 의한 lactic acid의 분리 특성을 연구하였다. 휘발성이 있는 lactate ester의 생성을 위한 lactic acid와 alcholo과의 반응에서, 반응에 의해 생성된 lactate ester의 휘발성이 높을 수록 증류탑으로 들어가는 lactate ester양은 증가하여 재비기에서 얻어진 lactic acid의 회수율은 증가 하였다. 부분응축기의 온도가 감소할수록 재비기로 모이는 lactate ester양은 증가하였고 재비기 내의 수화 반응에 의해 얻어지는 lactic acid의 양은 증가하였다 Lactic acid의 정제를 위한 lactate ester와 물과의 수화 반응은, 비록 증류탑 내에서 lactate ester와 물이 반응을 할 수 있으나, 증류탑 내에서의 체류시간이 짧기 때문에 대부분 재비기에서 이루어진다.

  • PDF

Lactate consumption mediates repeated high-intensity interval exercise-enhanced executive function in adult males

  • Cho, Hae-Sung;Lee, Won Sang;Yoon, Kyeong Jin;Park, Soo Hong;Shin, Hyung Eun;Kim, Yeon-Soo;Chang, Hyukki;Moon, Hyo Youl
    • 운동영양학회지
    • /
    • 제24권4호
    • /
    • pp.15-23
    • /
    • 2020
  • [Purpose] Lactate is a principal energy substrate for the brain during exercise. A single bout of high-intensity interval exercise (HIIE) can increase the blood lactate level, brain lactate uptake, and executive function (EF). However, repeated HIIE can attenuate exercise-induced increases in lactate level and EF. The lactate levels in the brain and blood are reported to be correlated with exercise-enhanced EF. However, research is yet to explain the cause-and-effect relationship between lactate and EF. This study examined whether lactate consumption improves the attenuated exercise-enhanced EF caused by repeated HIIE. [Methods] Eleven healthy men performed two sets of HIIE, and after each set, 30 min were given for rest and examination. In the 2nd set, the subjects consumed experimental beverages containing (n = 6) and not containing (n = 5) lactate. Blood, cardiovascular, and psychological variables were measured, and EF was evaluated by the computerized color-word Stroop test. [Results] The lactate group had a higher EF (P < 0.05) and tended to have a higher blood lactate level (P = 0.082) than the control group in the 2nd set of HIIE. Moreover, blood lactate concentration was correlated with the interference score (i.e., reverse score of EF) (r = -0.394; P < 0.05). [Conclusion] Our results suggest that the attenuated exercise-enhanced EF after repeated HIIE can be improved through lactate consumption. However, the role of lactate needs to be elucidated in future studies, as it can be used for improving athletes' performance and also in cognitive decline-related clinical studies.

Effect of Calcium Lactate on Physico-Chemical Characteristics of Shank Bone Extract

  • Choi, Jung-Seok;Jin, Sang-Keun;Choi, Yeong-Seok;Lee, Jin-Kyu;Jung, Ji-Taek;Choi, Yang-Il;Lee, Hyun-Joo;Lee, Jae-Joon
    • 한국축산식품학회지
    • /
    • 제37권2호
    • /
    • pp.313-319
    • /
    • 2017
  • This study was conducted to develop calcium-fortified shank bone extract (SBE) and to determine the effect of adding calcium lactate on physico-chemical characteristics of SBE during cold storage. The following five experiment groups were used: Control (0%, no addition), T1 (0.05% calcium lactate), T2 (0.1% calcium lactate), T3 (0.5% calcium lactate), and T4 (1% calcium lactate). When the concentration of calcium lactate added to the SBE was increased, the pH, redness, and yellowness values were significantly reduced, whereas the salinity, sugar content, and turbidity of SBE were significantly increased. Sensory parameters such as aroma, flavor, and overall acceptability in the control, T1, and T2 had similar scores. The TBARS values of SBE was significantly increased when 1% of calcium lactate was added, and the VBN values of SBE with calcium lactate at day 7 were higher than that of control (p<0.05). However, the addition of calcium lactate showed an inhibition effect on the growth of total microbial counts in SBE until 4 d of storage. The calcium content of SBE was increased by the addition of calcium lactate in a dose-dependently manner. The proper addition level of calcium lactate in the SBE was determined to be 0.1%.

Isolation and Characterization of Lactate-Tolerant Mutants in Bifidobacterium breve

  • Hyun, Hyung-Hwan;Lee, Hyune-Hwan;Yeo, Ick-Hyun;Kim, Tae-Seok;Lee, Joo-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권1호
    • /
    • pp.84-90
    • /
    • 1999
  • The growth of Bifidobacterium breve strain HP2 was completely inhibited by the addition of lactate higher than 4.0% but not by the addition of acetate. Two kinds of lactate-tolerant mutants were isolated by the nitrosoguanidine treatment, enrichment on a liquid medium with 5% lactate, and selection on agar plates with 5% lactate. The mutants were not only able to grow in the presence of 5% lactate but also improved in viable cell stability in the acidic pH range. In a pH-controlled fermentor, mutant N-1-5 grew at a rate slower than that of the wild type but its growth yield was higher. Notably, mutants were more halotolerant and more osmotolerant than the wild type and they were able to grow in the presence of 3% NaCl or 25% lactose at which the wild type entirely stopped the growth. The enzyme activities involved in the lactose metabolism in B. breve were measured to elucidate the biochemical basis for lactate tolerance. In the mutants, activities of several enzymes including phosphoglucomutase decreased compared to the wild-type, which may explain their lower growth rate. However, the activity of lactate dehydrogenase or its nature of inhibition by lactate was not altered.

  • PDF