• Title/Summary/Keyword: lamellar structure

Search Result 171, Processing Time 0.032 seconds

Evaluation of Settling Characteristics at Lamellar Secondary Clarifier (Lamellar 이차침전지에서의 침강 특성 파악)

  • Lee, Byong-Hi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.3
    • /
    • pp.471-478
    • /
    • 2012
  • Where an activated sludge system needs to be converted to biological nutrient removal(BNR) system, the secondary clarifier must handle higher MLSS from bioreactor since nitrification in BNR system that requires higher SRTs than activated sludge system. Either increase the clarifier size or modification of clarifier physical structure is required to cope with MLSS surge. One of recommended structural modification is the insertion of Lamellar within clarifier. In this study, two clarifiers - one has Lamellar structure inserted and the other does not - were used to compare the effect of Lamellar in solid/liquid separation. Same MLSS was fed to both clarifiers and concentrations of MLSS were varied. With all MLSS concentrations, attachment of MLSS on Lamellar was observed and it was found that detached MLSS caused the higher effluent SS concentrations than that of non-Lamellar clarifier effluent. From these results, Lamellar should not be inserted in clarifier to handle MLSS from BNR processes and the recommendation must be withdrawn.

Effect of Aluminium Content on High Temperature Deformation Behavior of TiAl Intermetallic Compound

  • Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.25 no.8
    • /
    • pp.398-402
    • /
    • 2015
  • Fundamental studies of microstructural changes and high temperature deformation of titanium aluminide (TiAl) were conducted from the view point of the effect of Al content in order to develop the manufacturing process of TiAl. Microstructures in an as cast state consisted mainly of lamellar structure irrespective of Al content. By homogenization at 1473 K, the microstructures of Ti-49Al and Ti-51Al were transformed into an equiaxial structure which was composed of ${\gamma}$-TiAl, while the lamellar structure that was observed in Ti-46Al and Ti-47Al was much more stable. We found that the reduction of Al content suppressed the formation of equiaxial grains and resulted in a microstructure of only a lamellar structure. On Ti-49Al and Ti-51Al, dynamic recrystallization occurred during high temperature deformation, and the microstructure was transformed into a fine equiaxial one, while the microstructures of Ti-46Al and Ti-47Al contained few recrystallized grains and consisted mainly of a deformed lamellar structure. We observed that on the low-Al alloys the lamellar structure under hard mode deformation conditions deformed as kink observed B2-NiAl. High temperature deformation characteristics of TiAl were strongly affected by Al content. An increase of Al content resulted in a decrease of peak stress and activation energy for plastic deformation and an increase of the recrystallization ratio in TiAl.

Changes of Lamellar Structure of TiAl Intermetallic Compound Heat Treatment (열처리에 따른 TiAl금속간화합물의 층상조직 변화)

  • Shin, Jae-Kwan;Chung, In-Sang;Park, Kyuong-Chae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.3
    • /
    • pp.127-137
    • /
    • 1993
  • The changes of lamellar(${\alpha}_2+{\gamma}$) structure of TiAl intermetallic compound which is a high potential, high temperature aerospace material was investigated by heat treatment. The lamellar structure was short and made subgrain in prior a grains after homogenizing at 1523 K. It became longer and finer, and the subgrain went out during subsequent isothermal heatteating at 1273 K. The yield, fracture strength and strain to fracture if the heat treated specimens was increased and the hardness of them was decreased a little in the finer lamellar structure, because fine lamellar interface, sugrain boundary and grain boundary may block initiation and propagation of crack.

  • PDF

Study on the beneficial effect of Bio-Mimic Liquid Crystal Emulsion (BLCE) on Skin Barrier Function (피부장벽에 대한 Bio-Mimic Liquid Crystal Emulsion (BLCE)의 긍정적 효과에 관한 연구)

  • Ahn, Yong-Hoon;Bae, Soon-Min;Jung, Jin-Kyo;Hwang, Jeong-Geun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.4
    • /
    • pp.227-230
    • /
    • 2007
  • The multi-lamellar and liquid crystal structures have drawn great public attention in the functional cosmetic and skin-related medicinal areas recently. The structure of an emulsion containing aqueous phase as a binding water and fixed oil phase components forming an association compound of the multi-lamellar structure can reconstruct the intercellular lipid lamellar structure in the stratum corneum and restore barrier function of the skin. In this study, we investigated the beneficial effect of bio-mimic liquid crystal emulsions (BLCE) containing higher fatty alcohol, lecithin, and cholesterol on the skin barrier function, and evaluated its cytotoxicity.

Phase behaviors, lamellar structures, and physical properties of synthetic vitamin E ceramide (Tocomide) mixed with cholesterol and linoleic acid

  • Lee, Young-Jin;Kim, Do-Hoon;Park, Ho-Sik;Kang, Hyung-Seok;Kim, Joong-Soo;Kim, Han-Kon
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.357-368
    • /
    • 2003
  • II-A isotherms and phase behaviors of 'tocomide', a newly synthesized 1,3-bis(N-(2-hydroxyethyl)-tocopherol succinylamino)-2-hydroxypropane, mixed with cholesterol and linoleic acid, was studied for its monolayer miscibility and a stable delivery formulation for antioxidant applications. The monolayer of tocomide and cholesterol was formed in a homogeneously mixed state at air-water interface. The ternary mixtures with linoleic acid showed various bulk structures, including a stable and transparent solution of thermodynamically stable lamellar phase. The lamellar structure was confirmed by the X-ray diffraction (XRD) patterns and polarized microscopy such that pure tocomide formed a liquid crystal at room temperature with a lamellar periodicity of 36.7 $\AA$(2$\theta$=2.41$^{\circ}$).

  • PDF

Synthesis of a Series of Long Chain Lamellar Inorganic/Organic Iron(II) Alkylsulfonate Hydrates

  • Park, Seong-Hun
    • Journal of Integrative Natural Science
    • /
    • v.1 no.2
    • /
    • pp.76-78
    • /
    • 2008
  • A series of the long-chain iron(II) alkylsulfonate hydrates were synthesized via self-assembly of surfactant alkyl chains in aqueous medium. Reaction of iron(II) salts with n-alkylsulfonate yields lamellar $Fe(CnH2n+1SO3)2{\cdot}4H_2O$. These compounds show a layered structure, as determined by XRD, consisting of alternating organic alkylsulfonate layers and inorganic iron(II) hydrate layers, with interlayer distances of upto 3.2 nm. This lamellar structure may be attributed to the amphiphilic nature of the surfactants, mediating the coordination and H-bionding interactions, and the hydrophobic alkyl chains. An alkyl chain packing of present system are differ from those of similar Cu(II) series, which are attributed from the size of hydrated metal(II) ions.

  • PDF

Analysis on Wetting Behavior of A Lamellar Type Wet Channels in An Evaporative Heat Exchanger (층상구조를 가진 증발식 열교환기 습채널의 표면 젖음도 해석)

  • Oh, Dong-Wook;Park, Jae Bum;Song, Chan Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.7
    • /
    • pp.283-287
    • /
    • 2016
  • One of the most important factors for determining the thermal performance of an evaporative cooling system is the wettability of the evaporative heat exchanger surface. Evaporation of a widely spread water film on the heat exchanger surface promotes heat transfer between the "dry" air and "wet" air passages. Hydrophilic coating is generally applied on the heat exchanger surfaces to increase the wettability of the heat exchanger surface and the COP of the evaporative cooling system. In this paper, a simple lamellar patterned structure is suggested to maximize the spreading of a water film on the vertically oriented walls. The capillary height of the lamellar structured grooves is analyzed through a theoretical model, and the results are compared with the numerical analysis through a finite element analysis tool, SE-FIT. A good agreement between the theoretical model and the numerical analysis can be observed as long as the channel depth is comparable to or larger than the channel width of the lamellar structure.

Formation and Dispersion of Stable Lamellar Structure Containing Ceramide (세라마이드를 함유한 안정한 라멜라 구조체 제조 및 분산)

  • Kim, Do-Hoon;Oh, Seong-Geun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.35 no.3
    • /
    • pp.171-177
    • /
    • 2009
  • This study described formation and dispersion of stable lamellar structure containing ceramide. To characterize of the lamellar structure containing ceramide, we used differential scanning calorimetry, x-ray diffraction, and FT-IR spectra, which enabled us to demonstrate that ceramide with appropriate amounts of lipid, oil and surfactant can assemble to form a stable lamellar-phase. These approaches to use ceramide offers useful means to fabricate a variety of biocompatible emulsion and liposome, which enlarge their applicability in the fields of drug delivery, dermatology and cosmetics.

Formation Process and Structure of Lamellar Grain Boundaries in Titanium Rich TiAl Intermetallics

  • Han, Chang-Suk;Lim, Sang-Yeon
    • Korean Journal of Materials Research
    • /
    • v.26 no.1
    • /
    • pp.13-16
    • /
    • 2016
  • Morphology and formation processes of lamellar grain boundaries in titanium rich binary TiAl intermetallics were studied. TiAl alloys containing aluminum content of 44 to 48 at.% were induction-heated to 1723 K followed by helium-gas-quenching at various temperatures. For the Ti-44%Al, few lamellae were observed in samples quenched from higher than 1473 K. Although small peaks of beta phase were detected using X-ray diffraction, only the ordered hexagonal phase (${\alpha}_2$) with clear APB contrast was observed in TEM observation. For the Ti-48 at.%Al alloy, almost no lamellar structure, and straight grain boundaries were observed in samples quenched from higher than 1623 K. The formation of lamellae along grain boundaries was observed in the sample quenched from 1573 K. The fully lamellar microstructures with serrated boundaries were observed in samples quenched from lower than 1473 K. It was found that the formation of ${\gamma}$ platelets took place at higher temperatures in Ti-48 at.%Al than in Ti-44 at.%Al. Although the size of the serration is different, serrated lamellar grain boundaries could be obtained for all alloy compositions employed. The serration appeared to be due to the grain boundary migration induced by precipitation and growth of ${\gamma}$. Differences in transformation characteristics with aluminum content are discussed.

Chain orientation and Degradation Behavior of Poly[(R)-3-hydroxybutyrate] Lamellar Crystals

  • Lee, Won Gi;Jo, Nam Ju;Ha, Chang Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.872-876
    • /
    • 2001
  • Topological changes caused by the alkaline and enzymatic attacks of solution-grown, chain-folded lamellar crystals (SGCs) of poly[(R)-3-hydroxybutyrate] P(3HB) have been studied in order to investigate the chain-folding structure in P(3HB) crystal regions. NaOH and an extracellular PHB depolymerase purified from Alcaligenes faecalis T1 were used for alkaline and enzymatic hydrolysis, respectively. The measurements were performed on crystals attached to a substrate which is inactive to degradation mediums. Both alkaline and enzymatic attacks lead to a breakup of the lamellar crystals along the crystallographic b-axis during initial erosion. Since hydrolysis preferentially occurs in amorphous regions, this morphological result reflects relatively loosely packed chains in core parts of lamellar crystals. Additionally, it was supported by the ridge formation along the b-axis in the lamellar crystals after thermal treatment at a low temperature because of the thermally sensitive nature of the loosely packed chains in lamellar crystals. However, the alkaline hydrolysis accompanied the chain erosions or scissions in quasi-regular folded lamellar surfaces due to smaller size of alkaline ions in comparison to the enzyme, resulting in the decrease of molecular weight.