• Title/Summary/Keyword: large area monolayer

Search Result 22, Processing Time 0.036 seconds

Transfer-Free, Large-Scale, High-Quality Monolayer Graphene Grown Directly onto the Ti (10 nm)-buffered Substrates at Low Temperatures (Ti (10 nm)-buffered 기판들 위에 저온에서 직접 성장된 무 전사, 대 면적, 고 품질 단층 그래핀 특성)

  • Han, Yire;Park, Byeong-Ju;Eom, Ji-Ho;Yoon, Soon-Gil
    • Korean Journal of Materials Research
    • /
    • v.30 no.3
    • /
    • pp.142-148
    • /
    • 2020
  • Graphene has attracted the interest of many researchers due to various its advantages such as high mobility, high transparency, and strong mechanical strength. However, large-area graphene is grown at high temperatures of about 1,000 ℃ and must be transferred to various substrates for various applications. As a result, transferred graphene shows many defects such as wrinkles/ripples and cracks that happen during the transfer process. In this study, we address transfer-free, large-scale, and high-quality monolayer graphene. Monolayer graphene was grown at low temperatures on Ti (10nm)-buffered Si (001) and PET substrates via plasma-assisted thermal chemical vapor deposition (PATCVD). The graphene area is small at low mTorr range of operating pressure, while 4 × 4 ㎠ scale graphene is grown at high working pressures from 1.5 to 1.8 Torr. Four-inch wafer scale graphene growth is achieved at growth conditions of 1.8 Torr working pressure and 150 ℃ growth temperature. The monolayer graphene that is grown directly on the Ti-buffer layer reveals a transparency of 97.4 % at a wavelength of 550 nm, a carrier mobility of about 7,000 ㎠/V×s, and a sheet resistance of 98 W/□. Transfer-free, large-scale, high-quality monolayer graphene can be applied to flexible and stretchable electronic devices.

Development of the Large-area Au/Pd Transfer-printing Process Applying Both the Anti-Adhesion and Adhesion Layers (접착방지막과 접착막을 동시에 적용한 대면적 Au/Pd 트랜스퍼 프린팅 공정 개발)

  • Cha, Nam-Goo
    • Korean Journal of Materials Research
    • /
    • v.19 no.8
    • /
    • pp.437-442
    • /
    • 2009
  • This paper describes an improved strategy for controlling the adhesion force using both the antiadhesion and adhesion layers for a successful large-area transfer process. An MPTMS (3-mercaptopropyltrimethoxysilane) monolayer as an adhesion layer for Au/Pd thin films was deposited on Si substrates by vapor self assembly monolayer (VSAM) method. Contact angle, surface energy, film thickness, friction force, and roughness were considered for finding the optimized conditions. The sputtered Au/Pd ($\sim$17 nm) layer on the PDMS stamp without the anti-adhesion layer showed poor transfer results due to the high adhesion between sputtered Au/Pd and PDMS. In order to reduce the adhesion between Au/Pd and PDMS, an anti-adhesion monolayer was coated on the PDMS stamp using FOTS (perfluorooctyltrichlorosilane) after $O_2$ plasma treatment. The transfer process with the anti-adhesion layer gave good transfer results over a large area (20 mm $\times$ 20 mm) without pattern loss or distortion. To investigate the applied pressure effect, the PDMS stamp was sandwiched after 90$^{\circ}$ rotation on the MPTMS-coated patterned Si substrate with 1-${\mu}m$ depth. The sputtered Au/Pd was transferred onto the contact area, making square metal patterns on the top of the patterned Si structures. Applying low pressure helped to remove voids and to make conformal contact; however, high pressure yielded irregular transfer results due to PDMS stamp deformation. One of key parameters to success of this transfer process is the controllability of the adhesion force between the stamp and the target substrate. This technique offers high reliability during the transfer process, which suggests a potential building method for future functional structures.

Rotated Domains in Chemical Vapor Deposition-grown Monolayer Graphene on Cu(111): An Angle-resolved Photoemission Study

  • Jeon, Cheolho;Hwang, Han-Na;Lee, Wang-Geun;Kim, Kwang S.;Park, Chong-Yun;Hwang, Chan-Cuk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.114.1-114.1
    • /
    • 2014
  • Copper is considered to be the most promising substrate for the growth of high-quality and large area graphene by chemical vapor deposition (CVD), in particular, on the (111) facet. Because the interactions between graphene and Cu substrates influence the orientation, quality, and properties of the synthesized graphene, we studied the interactions using angle-resolved photoemission spectroscopy. The evolution of both the Shockley surface state of the Cu(111) and the p band of the graphene was measured from the initial stage of CVD growth to the formation of a monolayer. Graphene growth was initiated along the Cu(111) lattice, where the Dirac band crossed the Fermi energy ($E_F$) at the K point without hybridization with the d-band of Cu. Then two rotated domains were additionally grown as the area covered with graphene became wider. The Dirac energy was about 0.4 eV and the energy of the Shockley surface state of Cu(111) shifted toward the $E_F$) by 0.15 eV upon graphene formation. These results indicate weak interactions between graphene and Cu, and that the electron transfer is limited to that between the Shockley surface state of Cu(111) and the p band of graphene. This weak interaction and slight lattice mismatch between graphene and Cu resulted in the growth of rotated graphene domains ($9.6^{\circ}$ and $8.4^{\circ}$), which showed no significant differences in the Dirac band with respect to different orientations. These rotated graphene domains resulted in grain boundaries which would hinder a large-sized single monolayer growth on Cu substrates.

  • PDF

Patterned Arrays of Well-Ordered ZnO Nanorods Assisted with Polystyrene Monolayer By Oxygen Plasma Treatment

  • Choi, Hyun Ji;Lee, Yong-Min;Lee, Yulhee;Seo, Hyeon Jin;Hwang, Ki-Hwan;Kim, Dong In;Yu, Jung-Hoon;Kim, Jee Yun;Nam, Sang Hun;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.146-146
    • /
    • 2016
  • Zinc Oxide (ZnO) was known as a promising material for surface acoustic wave devices, gas sensors, optical devices and solar cells due to piezoelectric material, large band gap of 3.37 eV and large exciton binding energy of 60 meV at room temperature. In particular, the alignment of ZnO nanostructures into ordered nanoarrays can bring about improved sensitivity of devices due to widen the surface area to catch a lot of gas particle. Oxygen plasma treatment is used to specify the nucleation site of round patterned ZnO nanorods growth. Therefore ZnO nanorods were grown on a quartz substrate with patterned polystyrene monolayer by hydrothermal method after oxygen plasma treatment. And then, we carried out nanostructures by adjusting the diameter of the arranged ZnO nanorods according to polystyrene spheres of various sizes. The obtained ZnO nanostructures was characterized by X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM).

  • PDF

Facile fabrication of ZnO Nanostructure Network Transistor by printing method

  • Choi, Ji-Hyuk;Moon, Kyeong-Ju;Jeon, Joo-Hee;Kar, Jyoti Prakash;Das, Sachindra Nath;Khang, Dahl-Young;Lee, Tae-Il;Myoung, Jae-Min
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.31.1-31.1
    • /
    • 2010
  • Various ZnO nanostructures were synthesized and ZnO nanostructure-based self-assembled transistors were fabricated. Compared to spindle and flower like nanostructure, the ZnO nanorod (NR) structure showed much stronger gate controllability, and greatly enhanced device performance, demonstrating that this structural variation leads to significant differences of the nanostructure network-based device performance. Also, patterned dry transfer-printing technique that can generate monolayer-like percolating networks of ZnO NRs has been developed. The method exploits the contact area difference between NR-NR and NR-substrate, rather than elaborate tailoring of surface chemistry or energetic. The devices prepared by the transferring method exhibited on/off current ratio, and mobility of ${\sim}2.7{\times}10^4$ and ${\sim}1.03\;cm^2/V{\cdot}s$, respectively. Also, they exhibited showing lower off-current and stronger gate controllability due to defined-channel between electrodes and monolayer-like network channel configuration. With multilayer stacks of nanostructures on stamp, the monolayer-like printing can be repeated many times, possibly on large area substrate, due to self-regulating printing characteristics. The method may enable high-performance macroelectronics with materials that have high aspect ratio.

  • PDF

Characteristics of LB Layer for White Light Organic Electroluminescent Device (백색 유기 EL 소자의 발광층용 LB막 특성)

  • Kim, Ju-Seung;Gu, Hal-Bon;Lee, Kyung-Sup;Song, Min-Jong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.90-93
    • /
    • 2002
  • In the surface pressure-area isotherms of mixed monolayers, mixtures containing as much as 30 mol% of AA form stable condensed monolayer while the monolayer without AA is in the expanded state because PVK take on 3D collapsed. All of the mixed monolayers with 0, 10, 20 and 30 mol% of AA could be readily transferred onto ITO substrate at 16, 17, 24 and 26 mN/m, respectively. The monolayer containing 30 mol% of AA, however, showed a roughness value of 28A and became homogeneous decreasing with the phase separation. We fabricated organic EL device of ITO/CuPc/MEL/BBOT/iLiF/Al using mixed monolayer of 13, 19 and 25 layer deposited by LB method as a emitting layer. In the voltage-current characteristics of EL device, current density was much smaller than that of the spin-coated devices. It may due to the large contact resistance existed at the interface of LB layer/organic layer inhibit carrier injection to the emitting layer. EL spectra of device showed peaks at 450. 470, 505, 555 and 650 nm and the white light emission indicate the CIE coordinate x=0.306, y=0.353.

  • PDF

Effect of Processing Parameters on the Formation of Large Area Self-Assembled Monolayer of Polystyrene Beads by a Convective Self-Assembly Method (대류성 자기조립법을 통한 폴리스티렌 비드 대면적 단일층 형성에 미치는 공정 변수 효과)

  • Seo, Ahn-na;Choi, Ji-Hwan;Pyun, Jae-chul;Kim, Won Mok;Kim, Inho;Lee, Kyeong-Seok
    • Korean Journal of Materials Research
    • /
    • v.25 no.12
    • /
    • pp.647-654
    • /
    • 2015
  • Self-assembled monolayers(SAM) of microspheres such as silica and polystyrene(PS) beads have found widespread application in photonic crystals, sensors, and lithographic masks or templates. From a practical viewpoint, setting up a high-throughput process to form a SAM over large areas in a controllable manner is a key challenging issue. Various methods have been suggested including drop casting, spin coating, Langmuir Blodgett, and convective self-assembly(CSA) techniques. Among these, the CSA method has recently attracted attention due to its potential scalability to an automated high-throughput process. By controlling various parameters, this process can be precisely tuned to achieve well-ordered arrays of microspheres. In this study, using a restricted meniscus CSA method, we systematically investigate the effect of the processing parameters on the formation of large area self-assembled monolayers of PS beads. A way to provide hydrophilicity, a prerequisite for a CSA, to the surface of a hydrophobic photoresist layer, is presented in order to apply the SAM of the PS beads as a mask for photonic nanojet lithography.

Rotated Domains in Chemical Vapor Deposition-grown Monolayer Graphene on Cu(111): Angle-resolved Photoemission Study

  • Jeon, Cheolho;Hwang, Han-Na;Lee, Wang-Geun;Jung, Yong Gyun;Kim, Kwang S.;Park, Chong-Yun;Hwang, Chan-Cuk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.146.2-146.2
    • /
    • 2013
  • Copper is considered to be the most promising substrate for the growth of high-quality and large area graphene by chemical vapor deposition (CVD), in particular, on the (111) facet. Because the interactions between graphene and Cu substrates influence the orientation, quality, and properties of the synthesized graphene, we studied the interactions using angle-resolved photoemission spectroscopy. The evolution of both the Shockley surface state of the Cu(111) and the ${\pi}$ band of the graphene was measured from the initial stage of CVD growth to the formation of a monolayer. Graphene growth was initiated along the Cu(111) lattice, where the Dirac band crossed the Fermi energy (EF) at the K point without hybridization with the d-band of Cu. Then two rotated domains were additionally grown as the area covered with graphene became wider. The Dirac energy was about -0.4 eV and the energy of the Shockley surface state of Cu(111) shifted toward the EF by ~0.15 eV upon graphene formation. These results indicate weak interactions between graphene and Cu, and the electron transfer is limited to that between the Shockley surface state of Cu(111) and the ${\pi}$ band of graphene. This weak interaction and slight lattice mismatch between graphene and Cu resulted in the growth of rotated graphene domains ($9.6^{\circ}$ and $8.4^{\circ}$), which showed no significant differences in the Dirac band with respect to different orientations. These rotated graphene domains resulted in grain boundaries which would hinder a large-sized single monolayer growth on Cu substrates.

  • PDF

Process Development of Self-Assembled Monolayers(SAMs) of Colloidal Particles (콜로이드 입자의 자기 배열성을 이용한 Monolayer 형성에 관한 연구)

  • Ko, Hwa-Young;Lee, Hae-Weon;Kim, Joo-Sun;Moon, Joo-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.981-987
    • /
    • 2002
  • Monodispersed colloidal silica was prepared by Stober process. We have synthesized monodispersed colloidal silica of carious sizes (100 nm, 200 nm, 300 nm) by controlling volume ratios of TEOS(Tetraethylorthosilicate), $NH_4OH$, Ethanol and D. I. water. Shape and monodispersity of the synthesized colloidal particles were observed by Scanning Electron Microscopy(SEM) and laser light scattering particle analyzer. Self-assembled monolayer of monodispersed colloids was achieved by dipping Si substrate into a well-dispersed silica suspension. It was determined that uniformity and spatial extent of the self-assemble monolayer of monodispersed colloids are significantly influenced by the experimental parameters such as concentration, pH and surface tension of the colloidal suspension. We have observed a hexagonally well-ordered packing colloidal monolayer in a relatively large area (1.5 mm ${\times}$ 1.5 mm) as confirmed by SEM.

Fabrication of Poly(methyl methacrylate) Beads Monolayer Using Rod-coater and Effects of Solvents, Surfactants and Plasma Treatment on Monolayer Structure (Rod 코팅을 이용한 Poly(methyl methacrylate) 비드의 단일층 형성 및 단일층 구조에 미치는 용매, 계면활성제, 플라즈마 처리의 영향)

  • Kim, Da Hye;Ham, Dong Seok;Lee, Jae-Heung;Huh, Kang Moo;Cho, Seong-Keun
    • Journal of Adhesion and Interface
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Fabrication of monolayer is important method for enhancing physical and chemical characteristics such as light shielding and antireflection while maintaining thin film properties. In previous studies, monolayers were fabricated by various methods on small substrates, but processes were complicated and difficult to form monolayers with large area. We used rod coating equipment with a small amount of coating liquid to form a HCP (hexagonal closed packing) coating of PMMA beads on PET(poly(ethylene terephthalate)) substrate with $20cm{\times}20cm$ size. We observed that changes in morphologies of monolayers by using the solvents with different boiling points and vapor pressures, by adapting surfactants on particles and by applying plasma treatment on substrates. The coverage was increased by 20% by optimizing the coating conditions including meniscus of beads, control of the attraction - repulsion forces and surface energy. This result can potentially be applied to optical films and sensors because it is possible to make a uniform and large-scale monolayer in a simple and rapid manner when it is compared to the methods in previous studies.