• Title/Summary/Keyword: large dam

Search Result 383, Processing Time 0.024 seconds

Deformation and stress behavior analysis of high concrete dam under the effect of reservoir basin deformation

  • Zheng, Dongjian;Xu, Yanxin;Yang, Meng;Gu, Hao;Su, Huaizhi;Cui, Xinbo;Zhao, Erfeng
    • Computers and Concrete
    • /
    • v.18 no.6
    • /
    • pp.1153-1173
    • /
    • 2016
  • According to deformation data measured in some high concrete dams, for dam body deformation, there is a complex relationship with dam height and water head for different projects, instead of a simple monotonic relationship consistently. Meanwhile, settlement data of some large reservoirs exhibit a significant deformation of reservoir basin. As water conservancy project with high concrete dam and large storage capacity increase rapidly these decades, reservoir basin deformation problem has gradually gained engineers' attentions. In this paper, based on conventional analytical method, an improved analytical method for high concrete dam is proposed including the effect of reservoir basin deformation. Though establishing FEM models of two different scales covering reservoir basin and near dam area respectively, influence of reservoir basin on dam body is simulated. Then, forward and inverse analyses of concrete dam are separately conducted with conventional and proposed analytical methods. And the influence of reservoir basin deformation on dam working behavior is evaluated. The results of two typical projects demonstrate that reservoir basin deformation will affect dam deformation and stress to a certain extent. And for project with large and centralized water capacity ahead of dam site, the effect is more significant than those with a slim-type reservoir. As a result, influence of reservoir basin should be taken into consideration with conducting analysis of high concrete dam with large storage capacity.

Large deformation performance of the anti-seepage system connection part in earth core dam built on thick overburden

  • Yu, Xiang;Wang, Gan;Wang, Yuke;Du, Xueming;Qu, Yongqian
    • Geomechanics and Engineering
    • /
    • v.29 no.6
    • /
    • pp.683-696
    • /
    • 2022
  • Dams are inevitably planned to be built on thick overburden with high permeability and deformability. The connection part between concrete cut-off wall in overburden and earth core in dam body is not only a key part of the anti-seepage system, but also a weak position. Large uneven settlement will be aroused at the concoction part. However, the interaction behavior and the scope of the connection part cannot be determined effectively. In this paper, numerical analysis of a high earth core dam built on thick overburden was carried out with large deformation FE method. The mechanical behavior of the connection part was detail studied. It can be drawn that there is little differences in dam integral deformation for different analysis method, but big differences were found at the connection part. The large deformation analysis method can reasonably describe the process that concrete wall penetrates into soil. The high plasticity clay has stronger ability to adapt to large uneven deformation which can reduce stress level, and stress state of concrete wall is also improved. The scope of high plasticity clay zone in the connection part can be determined according to stress level of soils and penetration depth of concrete wall.

Analysis of Korean TMLD Design Flow Variation due to Large Dam Effluents and Water Use Scenarios

  • Shin, Hyun-Suk;Kang, Doo-Kee;Kim, Sang-Dan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.74-83
    • /
    • 2007
  • The goal of this study is to establish an integrated watershed hydrologic model for the whole Nakdong River basin whose area is an approximately 24,000 km2. Including a number of watershed elements such as rainfall, runoff, water use, and so on, the proposed model is based on SWAT model, and is used to improve the flow duration curve estimation of ungauged watersheds for Korean Total Maximum Daily Load (TMDL). The model is also used to recognize quantitatively the river flow variation due to water use elements and large dam effluents in the whole watershed. The established combined watershed hydrologic model, SWAT-Nakdong, is used to evaluate the quantified influences of artificial water balance elements, such as a dam and water use in the watershed. We apply two water balance scenarios in this study: the dam scenario considering effluent conditions of 4 large multi-purpose dams, Andong dam, Imha dam, Namgang dam, and Habcheon dam, and the water use scenario considering a water use for stream line and the effluent from a treatment plant. The two scenarios are used to investigate the impacts on TMDL design flow and flow duration of particular locations in Nakdong River main stream. The results from this study will provide the basic guideline for the natural flow restoration in Nakdong River.

  • PDF

Changes in the Concentrations and the Characteristics of Organic Carbon After Entrance into Dam Reservoirs (댐저수지 유입 후 유기탄소 농도 및 성상 변화)

  • Shin, Jae-Won;Lee, Bo-Mi;Hur, Jin;Park, Ji-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.81-87
    • /
    • 2013
  • Changes of organic carbon after the entrance into dam reservoirs were investigated using water samples collected in May, September, and October in 2010 from the inflow sites and the outlets of four selected dam reservoirs-Soyang, Chungju, Chungju regulation, and Uiam. Increase of refractory dissolved organic carbon (R-DOC) was observed only for large dam reservoirs with long residence times whereas the trend was not found for relatively small reservoirs. The effects of residence times on organic carbon changes were further confirmed by significant positive correlations between monthly residence times and the relative increase of either dissolved organic carbon (DOC) or R-DOC concentrations. Comparison of spectroscopic characteristics of DOC revealed that the changes in the large reservoirs in May might result from in-lake processes. The inflow of terrestrial sources of DOM during storms appears to largely affect the DOC quality of the large reservoirs for the rest of the sampling periods. The mechanism, however, did not fully explain the behaviors of DOC for the small sized reservoirs. Our combined results suggested that both residence time and the input of allochthonous carbon sources might substantially influence the quantity of DOC as well as its quality in dam reservoirs.

Evaluation of Empirical Design Factors of Coarse Grained Material through Large Scale Shear Test (대형전단시험을 통한 댐제체용 조립재료의 경험적 설계정수에 대한 평가)

  • Oh, Gi-Dae;Kim, Kyoung-Yul;Lee, Dae-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.777-783
    • /
    • 2006
  • The coarse grained materials are used in various construction field such as express way back fill, Dam etc. Especially, for dam construction, a huge mount of rock fill materials are needed, so around domestic stony mountains are generally developed to produce materials. Not an accurate theory, but design criteria is based on empirical factors that were constructed in advance for design of dam especially Concrete Face Rockfill Dam(CFRD). Considering the post facts, the modified design criteria are essential in the future with more theoretical and experimental ways. In this study, large scale direct shear tests are performed with various relative density conditions on coarse grained material of Yecheon area to compare test results and general CFRD design factors.

  • PDF

A Examination on Stability of Dam using 3D Laser Scanning System (3D Laser Scanning을 이용한 댐체의 안정성 검토)

  • Lee, Jae-One;Shon, Ho-Woong;Yun, Bu-Yeol
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.451-454
    • /
    • 2007
  • There is an inseparable relation between human race and engineering work. As world developed into highly industrialized society, a diversity of large structures is being built up correspondently to limited topographical circumstance. Though large structures are national establishments which provide us with convenience of life, there are some disastrous possibilities which were never predicted such as ground subsidence and degradation. It is very difficult to analyze the volume of total metamorphosis with the relative displacement measurement system which is now used and it is impossible to know whether there is structural metamorphosis within a permissible range of design or not. In this research with an object of 13-year-old earthen dam, through generating point-cloud which has 3D spatial coordinates(x, y, z) of this dam by means of 3D Laser Scanning, we can get real configuration data of slanting surface of this dam with this method of getting a number of 3D spatial coordinates(x, y, z). It gives 3D spatial model to us and we can get various information of this dam such as the distance of slanting surface of dam, dimensions and cubic volume. It can be made full use of as important source material of reinforcement and maintenance works to detect previously the bulging of the dam through this research.

  • PDF

Evaluation of Internal Settlement of Rockfill Dam under Construction (석괴댐의 축조 중 내부 침하 거동 평가)

  • Seo, Min-Woo;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.4
    • /
    • pp.45-52
    • /
    • 2010
  • The purposes of this research are to analyze the internal settlement behavior of Concrete Faced Rockfill Dam (CFRD) typed 'D dam' and to evaluate the stability of the 'D dam' during dam construction using internal settlement measurements and results of numerical analysis. The field measurements were obtained during dam construction period. The numerical analysis was also carried out for the same construction period. The numerical analysis focused mainly on prediction of stress and displacement behavior of 'D dam' during dam construction stage using input parameters obtained from laboratory tests, i.e. large triaxial tests. The behavior of 'D dam' was evaluated to be stable from comparing the results of field measurements and numerical analysis. A simple empirical equation is also presented to predict final settlement at the completion of dam construction, using settlement measurement monitored during dam embankment.

A study on the irrigation water pumping system of multipurpose dams by the large water ejector (대형 수이젝터를 이용한 다목적댐 관개용수 펌핑시스템에 관한 연구)

  • 윤석훈;오철;손근홍;김철환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.73-80
    • /
    • 1994
  • The water ejector is a low pressure high flow rate volumetric pump. It utilize the energy of a low mass flow, high velocity stream to induce a large mass flow, low velocity stream. In addition, it has a very good resistances to cavitation compared to the other type of pumps, and the maintenance cost is practically nil. There has been enormous energy loss to supply the upper part water of dam which has large potential energy as mere irrigation water in domestic multipurpose dam. The new type of energy saving system which developed through the present study can economizes over 950,000 kWh per year by mixing the upper part water of dam with the waste water by the large water ejector. This paper estimates the economical efficiency of the new type of irrigation water pumping system, and further more, represents the change of performance characteristics of large water ejector, which was adapted to this system, according to the fluctuation of upper water level that seasonally changes.

  • PDF

Characteristics Analysis of Principal Stress Ratio in Concrete Faced Rockfill Dam Using a Model Test (모형실험에 의한 콘크리트 표면차수벽형 석괴댐의 주응력비 특성 분석)

  • Kim Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.4
    • /
    • pp.33-40
    • /
    • 2006
  • In present study, the principal stress condition needed to conduct cubical large-scale triaxial test which can reflect three dimensional stress condition (or plain strain condition) in a dam was investigated by performing model test and numerical analysis and the principal stress ratio varying with the height of CFRD was examined. Also, the principal stress ratio in CFRD body was investigated from the monitoring results of horizontal and vertical earth pressure gages, installed in the center zone and lower part of transition zone of the dam body, respectively, in order to consider the principal stress condition in the large-scale triaxial test to model the behavior of CFRD. The result of the study indicated that the principal stress ratio decreased gradually from the lower to the upper part in the dam body for its center axis and was about 0.5 and 0.2 in the lower and upper part, respectively.