• Title/Summary/Keyword: large intestinal functions

Search Result 7, Processing Time 0.025 seconds

Effect of Indigestible Dextrin on Large Intestinal Functions and Fecal States of Rats (난소화성 덱스트린의 섭취가 흰쥐의 장 기능 및 분변 성상에 미치는 영향)

  • 강현숙;이연숙;박양자
    • Journal of Nutrition and Health
    • /
    • v.31 no.6
    • /
    • pp.991-998
    • /
    • 1998
  • The effects of indigestible dextrin on serum lipid and glucose concentrations, large intestinal functions, feces states, and gastrointestinal transit time were studied with 90 male Sprague-Dawley rats. Diets contained 0.5% cellulose(0.5CL control), 10% cellulose(10CL), and 10% indigestible dextrin I (10ID-I), respectively and were fed to the rats for 3 weeks. Serum cholesterol and LDL-cholesterol concentrations were lower in rats fed the 10ID-I diet. Serum triglyceride concentration was lower in rats fed the 10CL diet. Cecal content and cecum weight significantly increased in the rats fed the 10ID- I diet. Cecal pH of the rats fed the 10ID-I diet was lower than that of the rats fed the 0.5CL diet. Changes of fecal output were not observed in case of 0.5CL and 10ID-I diets but a significant increase was observed in the case of 10CL. Gastrointestinal transit time of 10ID-I was the longest among the three diets. These results demonstrate that indigestible dextrin delivered to the cecum was not digested and increased the cecal mass. Indigestible dextrin improves colonic health of rats by inducing low pH of the cecum. (Korean J Nutrition 31(6) 991-998, 1998)

  • PDF

Characterization of the bacterial microbiota across the different intestinal segments of the Qinghai semi-fine wool sheep on the Qinghai-Tibetan Plateau

  • Wang, Xungang;Hu, Linyong;Liu, Hongjin;Xu, Tianwei;Zhao, Na;Zhang, Xiaoling;Geng, Yuanyue;Kang, Shengping;Xu, Shixiao
    • Animal Bioscience
    • /
    • v.34 no.12
    • /
    • pp.1921-1929
    • /
    • 2021
  • Objective: The intestinal microbiota enhances nutrient absorption in the host and thus promotes heath. Qinghai semi-fine wool sheep is an important livestock raised in the Qinghai-Tibetan Plateau; however, little is known about the bacterial microbiota of its intestinal tract. The aim of this study was to detect the microbial characterization in the intestinal tract of the Qinghai semi-fine wool sheep. Methods: The bacterial profiles of the six different intestinal segments (duodenum, jejunum, ileum, cecum, colon and rectum) of Qinghai semi-fine wool sheep were studied using 16S rRNA V3-V4 hypervariable amplicon sequencing. Results: A total of 2,623,323 effective sequences were obtained, and 441 OTUs shared all six intestinal segments. The bacterial diversity was significantly different among the different intestinal segments, and the large intestine exhibited higher bacterial diversity than the small intestine. Firmicutes, Bacteroidetes, and Patescibacteria were the dominant phyla in these bacterial communities. Additionally, at the genus level, Prevotella_1, Candidatus_Saccharimonas, and Ruminococcaceae_UCG-005 were the most predominant genus in duodenal segment, jejunal and ileal segments, and cecal, colonic, and rectal segments, respectively. We predicted that the microbial functions and the relative abundance of the genes involved in carbohydrate metabolism were overrepresented in the intestinal segments of Qinghai semi-fine wool sheep. Conclusion: The bacterial communities and functions differed among different intestinal segments. Our study is the first to provide insights into the composition and biological functions of the intestinal microbiota of Qinghai semi-fine wool sheep. Our results also provide useful information for the nutritional regulation and production development in Qinghai semi-fine wool sheep.

Immunohistochemistry of Gastrointestinal Endocrine Cells in the Meckel′s Diverticulum of the Bean Goose, Anser fabalis Latham

  • Ku, Sae-Kwang;Lee, Hyeung-Sik;Park, Ki-Dae;Lee, Jae-Hyun
    • Animal cells and systems
    • /
    • v.4 no.4
    • /
    • pp.375-379
    • /
    • 2000
  • The appearance of some gastrointestinal endocrine cells in the Meckel's diverticulum (MD) of the bean goose, Anser fabalis Latham was observed using specific antisera against serotonin, gastrin, cholecystokinin (CCK)-8, glucagon, secretin, somatostatin and human pancreatic polypeptide (HPP) with the peroxidase antiperoxidase (PAP) method. Among these specific antisera, serotonin-, gastrin-, CCK-8-, somatostatin- and HPP-immunoreactive cells were demonstrated in this study. Serotonin-, gastrin- and somatostatin-immunoreactive cells were detected at moderate frequency and CCK-8- and HPP-immunoreactive cells was rare and low frequencies, respectively. These immunoreactive cells were located in the superficial epithelium, intestinal crvpt and intestinal glands with spherical or spindle shaped cells having long cytoplasmic processes (open typed-cell). Mucosal layer of MD was composed of simple columnar epithelium and numerous intestinal glands. In addition, numerous lymphatic tissues were also demonstrated. In conclusion, histological profiles of MD were similar to any parts of the large intestine, especially the cecum, but the appearance, distribution and relative frequency of gastrointestinal endocrine cells were similar to those of upper parts of the small intestine. Although the exact digestive functions were unknown, the finding that the appearance, distribution and relative frequency of gastrointestinal endocrine cells in MD is similar to small intestine may be considered as distinct evidence that this organ may have some digestive functions.

  • PDF

A Review of Interactions between Dietary Fiber and the Gastrointestinal Microbiota and Their Consequences on Intestinal Phosphorus Metabolism in Growing Pigs

  • Metzler, B.U.;Mosenthin, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.4
    • /
    • pp.603-615
    • /
    • 2008
  • Dietary fiber is an inevitable component in pig diets. In non-ruminants, it may influence many physiological processes in the gastrointestinal tract (GIT) such as transit time as well as nutrient digestion and absorption. Moreover, dietary fiber is also the main substrate of intestinal bacteria. The bacterial community structure is largely susceptible to changes in the fiber content of a pig's diet. Indeed, bacterial composition in the lower GIT will adapt to the supply of high levels of dietary fiber by increased growth of bacteria with cellulolytic, pectinolytic and hemicellulolytic activities such as Ruminococcus spp., Bacteroides spp. and Clostridium spp. Furthermore, there is growing evidence for growth promotion of beneficial bacteria, such as lactobacilli and bifidobacteria, by certain types of dietary fiber in the small intestine of pigs. Studies in rats have shown that both phosphorus (P) and calcium (Ca) play an important role in the fermentative activity and growth of the intestinal microbiota. This can be attributed to the significance of P for the bacterial cell metabolism and to the buffering functions of Ca-phosphate in intestinal digesta. Moreover, under P deficient conditions, ruminal NDF degradation as well as VFA and bacterial ATP production are reduced. Similar studies in pigs are scarce but there is some evidence that dietary fiber may influence the ileal and fecal P digestibility as well as P disappearance in the large intestine, probably due to microbial P requirement for fermentation. On the other hand, fermentation of dietary fiber may improve the availability of minerals such as P and Ca which can be subsequently absorbed and/or utilized by the microbiota of the pig's large intestine.

Nutritional Role of Dietary Fiber-Recent Knowledge on Dietary fiber (식이섬유의 주요기능)

  • Tsuji, Keisuke
    • Journal of Food Hygiene and Safety
    • /
    • v.7 no.4
    • /
    • pp.173-176
    • /
    • 1992
  • Non-absorbable substances in foods, for instance dietary fiber had been previously known as a non-nutritive part of foods. Recently , such a category has been gradually changed to as one of nutrients, As a main reason, dietary fibers includes many poly-or oligo-saccharides, which as resistant to alimentary hydrolyzing enzyme, However, parts of them are fermented by intestinal micro-organism to produce short chain fatty acids and so on. They are absorbed and utilized by human being. Now, it may be naturally accepted that dietary fiber is a kind of nutrients. Dietary fiber exerts many useful functions on body. They are classified into three large function , physicochemical function, physiological function and biological function. The last function of dietary fiber will be presented in the symphosium. Dietary fiber has several kinds of nutritional properties. One is energy source. Short chain fatty acids(SCFA) are oxidized and produced energy in body. Dietary fiber has not high energy, but not zero kilocalories. Another one is to be a constitutional component of higher animals' tissue. Last but most important one is physiological functions of dietary fiber.

  • PDF

Studies of the Central Neural Pathways to the Hapgok(LI4) and Large Intestine (합곡과 대장의 중추신경로와의 연계성에 관한 연구)

  • Lee, Chang-Hyun;Jeong, Han-Sol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.2
    • /
    • pp.217-226
    • /
    • 2011
  • The aim of this study is to identify central neural pathway of neurons following the projection to the large intestine and Hapgok(LI4) which is Won acupoint of the large intestine meridian of hand-yangmyeong. In this experiment, Bartha's strain of pseudorabies virus was used to trace central localization of neurons related with large intestine and acupoint(LI4) which has been known to be able to regulate intestinal function. The animals were divided into 3 groups: group 1, injected into the large intestine; group 2, injected into the acupoint(LI4); group 3, injected into the acupoint(LI4) after severing the radial, ulnar, median nerve. After four days survival of rats, PRV labeled neurons were identified in the spinal cord and brain by immunohistochemical method. First-order PRV labeled neurons following the projection to large intestine, acupoint(LI4) and acupoint(LI4) after cutting nerve were found in the cervical, thoracic, lumbar and sacral spinal cord. Commonly labeled neurons were labeled in the lumbosacral spinal cord and thoracic spinal cord. They were found in lamina V- X, intermediomedial nucleus and dorsal column area. The area of sensory neurons projecting was L5-S2 spinal ganglia and T12-L1 spinal ganglia, respectively. In the brainstem, the neurons were labeled most evidently and consistently in the nucleus tractus solitarius, area postrema, dorsal motor nucleus of vagus nerve, reticular nucleus, raphe nuclei(obscurus, magnus and pallidus), C3 adrenalin cells, parapyramidal area(lateral paragigantocellular nucleus), locus coeruleus, subcoeruleus nucleus, A5 cell group, periaqueductal gray matter. In the diencephalon, PRV labeled neurons were marked mostly in the arcuate nucleus and median eminence. These results suggest that overlapped CNS locations are related with autonomic nuclei which regulate the functions of large intestine-related organs and it was revealed by tracing PRV labeled neurons projecting large intestine and related acupoint(LI4).

Use of Cellulose and Recent Research into Butyrate (섬유소의 이용과 butyrate의 최근 연구)

  • Yeo, Tae Jong;Choi, In Soon;Cho, Kwang Keun
    • Journal of Life Science
    • /
    • v.22 no.11
    • /
    • pp.1571-1586
    • /
    • 2012
  • On earth, there are about 5,400 kinds of mammals, of which about 1,000 kinds are herbivores. Among herbivores, about 250 kinds are known to be ruminants. As for cattle and sheep, which are ruminants, fermentation takes places mainly in their rumen; in contrast, for pigs and men, which are non-ruminants, fermentation takes place mainly in their caecum, colon, and rectum. As for the kind and dominance of rumen microorganisms, Bacteroidetes account for 51% and Firmicutes for 43%. As for the dominance of the large intestine microorganisms in men, Firmicutes account for 65% and Bacteroidetes for 25%. Cell wall components are decomposed by microorganisms, and short chain fatty acids (SCFAs) are generated through fermentation; the ratio of acetate, propionate, and butyrate generate is 60:25:15. Butyrate absorbed through the primary butyrate transporter MCT1 (mono carboxylate transports-1) in the intestines activates such SCFA receptors as GPR43 and GPR41. Butyrate has a strong anti-tumorigenic function. Butyrate is characterized by the fact that it has an effect on many cancer cells, contributes to the coordination of functions in the cells, and induces cancer apoptosis. Butyrate activates caspase but inhibits the activity of HDAC (histone deacetylase), so as to induce apoptosis. In addition, it increases p53 expression, so as to induce cell cycle arrest and apoptosis. Anti-inflammation actions of SCFA include the reduction of IL-8 expression in intestinal epithelial cells, the inhibition of NO synthesis, and the restraint of the activity of NF-${\kappa}B$ (nuclear factor ${\kappa}B$), so as to suppress the occurrence of cancers caused by inflammation. Butyrate plays an important role in maintaining physiological functions of intestinal mucous membranes and is used as a cure for inflammatory bowel disease (IBD).