• Title/Summary/Keyword: laser kerf geometry

Search Result 3, Processing Time 0.017 seconds

A Study on the Prediction of the Kerf Width Geometry and the Heat-affected zone in laser Cutting of the alloy Tool Steels(STD11) (합금공구강(STD11)의 레이저 절단에서 절단폭 형상 예측과 열 영향부에 관한 연구)

  • Cho, Y.M.;You, U.J.;Kim, J.D.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.130-137
    • /
    • 1995
  • With the rapid growth of the die and mold, the new die making method has been developed. Especially, the laser is very useful, because it has a very fast cutting speed and is possible to manufacture complicated geometry. The quality of the laser cut is to be evaluated with respect to some characteristic quality parameters such as kerf width geometry, roughness and heat affected zone. This paper describes the laser cut characteristic(heat-affected zone) of the alloy tool steels(STD11) and the prediction of the kerf width genmetry by the FEM. On using the oxidation heat and laser beam, the prediction of kerf geometry is more accurate than that only by the laser beam. After laser cutting, the heat-affected zone is generated on the cutting cross section. The magnitude of hardness on the cutting cross section was similar to that of the heat treatment. It was possible to predict heat-affected zone by using the FEM program.

  • PDF

An investigation on dicing 28-nm node Cu/low-k wafer with a Picosecond Pulse Laser

  • Hsu, Hsiang-Chen;Chu, Li-Ming;Liu, Baojun;Fu, Chih-Chiang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.63-68
    • /
    • 2014
  • For a nanoscale Cu/low-k wafer, inter-layer dielectric (ILD) and metal layers peelings, cracks, chipping, and delamination are the most common dicing defects by traditional diamond blade saw process. Sidewall void in sawing street is one of the key factors to bring about cracks and chipping. The aim of this research is to evaluate laser grooving & mechanical sawing parameters to eliminate sidewall void and avoid top-side chipping as well as peeling. An ultra-fast pico-second (ps) laser is applied to groove/singulate the 28-nanometer node wafer with Cu/low-k dielectric. A series of comprehensive parametric study on the recipes of input laser power, repetition rate, grooving speed, defocus amount and street index has been conducted to improve the quality of dicing process. The effects of the laser kerf geometry, grooving edge quality and defects are evaluated by using scanning electron microscopy (SEM) and focused ion beam (FIB). Experimental results have shown that the laser grooving technique is capable to improve the quality and yield issues on Cu/low-k wafer dicing process.

Development of a Quality Analysis Program for Laser Fusion Cutting (레이저 용융 절단 해석 프로그램 개발)

  • 이성환;민헌식
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.3
    • /
    • pp.72-79
    • /
    • 2002
  • Though the laser cutting process is increasingly used in industry, a process automation and systematic database is still yet to be developed. In this study, as the fundamental step toward the construction of a reliable process expert system, a laser cutting quality monitoring/analysis system is developed based on simulations and experimental results. The relations between laser process parameters and laser cutting surface quality parameters such as kerf geometry, striation, surface roughness and dross formation are characterized and analyzed. A graphical user interface is used to visualize the results.