• Title/Summary/Keyword: layer-by-layer

Search Result 24,193, Processing Time 0.052 seconds

Layer-by-layer self-assembly colorant multi-layer preparation using natural colorant Berberine and anionic polyelectrolyte (베르베린 천연색소화합물과 음이온고분자전해질을 이용한 layer-by-layer self-assembly 색소다층박막 제조)

  • Son Young-A;Park Young-Min;Lee Seung-Goo;Ravikumar K.
    • Textile Coloration and Finishing
    • /
    • v.18 no.1
    • /
    • pp.28-32
    • /
    • 2006
  • A multi-layer of the dye, natural colorant Berberine, was successfully developed by the self-assembly deposition from water-soluble cationic dye(Berberine chloride) and anionic polyelectrolyte PSS(Polysodium 4-styrenesulfonate) in aqueous solution via electrostatic attraction. The corresponding results on multi-layer were characterized by UV-Vis absorbance measurements. The growth of multi-layer formed by the sequential interaction was also determined. The findings measured by UV-Vis spectrophotometer showed that the bilayer deposition characteristic was linear and highly reproducible from layer to layer.

A Distributed Layer 7 Server Load Balancing (분산형 레이어 7 서버 부하 분산)

  • Kwon, Hui-Ung;Kwak, Hu-Keun;Chung, Kyu-Sik
    • The KIPS Transactions:PartA
    • /
    • v.15A no.4
    • /
    • pp.199-210
    • /
    • 2008
  • A Clustering based wireless internet proxy server needs a layer-7 load balancer with URL hashing methods to reduce the total storage space for servers. Layer-4 load balancer located in front of server cluster is to distribute client requests to the servers with the same contents at transport layer, such as TCP or UDP, without looking at the content of the request. Layer-7 load balancer located in front of server cluster is to parse client requests in application layer and distribute them to servers based on different types of request contents. Layer 7 load balancer allows servers to have different contents in an exclusive way so that it can minimize the total storage space for servers and improve overall cluster performance. However, its scalability is limited due to the high overhead of parsing requests in application layer as different from layer-4 load balancer. In order to overcome its scalability limitation, in this paper, we propose a distributed layer-7 load balancer by replacing a single layer-7 load balancer in the conventional scheme by a single layer-4 load balancer located in front of server cluster and a set of layer-7 load balancers located at server cluster. In a clustering based wireless internet proxy server, we implemented the conventional scheme by using KTCPVS(Kernel TCP Virtual Server), a linux based layer-7 load balancer. Also, we implemented the proposed scheme by using IPVS(IP Virtual Server), a linux-based layer-4 load balancer, installing KTCPVS in each server, and making them work together. We performed experiments using 16 PCs. Experimental results show scalability and high performance of the proposed scheme, as the number of servers grows, compared to the conventional scheme.

Method of Vulnerability Analysis from Layer Scanning (Layer별 Scanning을 사용한 취약성 분석 방법)

  • Chun, Woo-Sung;Park, Dea-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.277-280
    • /
    • 2010
  • Network based on the OSI 7 Layer communication protocol is implemented, and the Internet TCP / IP Layer Based on the vulnerability is discovered and attacked. In this paper, using the programs on the network Layer Scanning conducted by the Layer-by each subsequent vulnerability analysis. Layer by Scanning each vulnerability analysis program to analyze the differences will be studied. Scanning for the studies in the program reflects the characteristics of the Scanning Features of way, and security countermeasures by each Layer is presented. The results of this study was to analyze its vulnerability to hackers and security for defense policy as the data is utilized to enhance the security of the network will contribute.

  • PDF

Characteristics of Bi-superconducting Thin Films Prepared by Co- and Layer-by-Layer Deposition

  • Yang, Sung-Ho;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.40-44
    • /
    • 2000
  • $Bi_2Sr_2Ca_nCu_{n+1}O_y$($n{\geq}0$; BSCCO)thin film is fabricated via two different processes using an ion beam sputtering method i.e. co-deposition and layer-by-layer deposition. A single phase of Bi2212 can be fabricated via the co-deposition process. While it cannot be obtained by the layer-by-layer process. Ultra-low growth rate in our ion beam sputtering system brings out the difference in Bi element adsorption between the two processes and results in only 30% adsorption against total incident Bi amount by layer-by-layer deposition, in contrast to enough Bi adsorption by co-deposition.

  • PDF

Comparison between Bi-superconducting Thin Films Fabricated by Co-Deposition and Layer-by-Layer Deposition

  • Yang, Sung-Ho;Park, Yong-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.9
    • /
    • pp.796-800
    • /
    • 2000
  • Bi$_2$Sr$_2$Ca$_{n}$Cu$_{n+1}$ O$_{y}$(n$\geq$0; BSCCO) thin film is fabricated via two different processes using an ion beam sputtering method i.e. co-deposition and layer-by-layer deposition. A single phase of Bi2212 can be fabricated via the co-deposition process. While it cannot be obtained by the layer-by-layer process. Ultra-low growth rate in our ion beam sputtering system brings out the difference in Bi element adsorption between the two processes and results in only 30% adsorption against total incident Bi amount by layer-by-layer deposition, in contrast to enough Bi adsorption by co-deposition.on.n.

  • PDF

Comparison between BSCCO Thin Films Fabricated by Co-Deposition and Layer-by-Layer Deposition

  • Lee, Hee-Kab;Park, Yong-Pil;Lee, Joon-Ung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.230-234
    • /
    • 2000
  • Bi$_2$Sr$_2$Ca$_{n}$Cu$_{n+1}$ O$_{y}$(n$\geq$0; BSCCO)thin film is fabricated via two different processes using an ion beam sputtering method i.e. co-deposition and layer-by-layer deposition. A single phase of Bi2212 can be fabricated via the co-deposition process. While it cannot be obtained by the layer-by-layer process. Ultra-law growth rate in our ion beam sputtering system brings out the difference in Bi element adsorption between the two processes and results in only 30% adsorption against total incident Bi amount by layer-by-layer deposition, in contrast to enough Bi adsorption by co-deposition.on.n.

  • PDF

The Study of Luminescence Efficiency by change of OLED's Hole Transport Layer

  • Lee, Jung-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.2
    • /
    • pp.52-55
    • /
    • 2006
  • The OLEDs(Organic Light-Emitting Diodes) structure organizes the bottom layer using glass, ITO(indium thin oxide), hole injection layer, hole transport layer, emitting material layer, electron transport layer, electron injection layer and cathode using metal. OLED has various advantages. OLEDs research has been divided into structural side and emitting material side. The amount of emitting light and luminescence efficiency has been improved by continuing effort for emitting material layer. The emitting light mechanism of OLEDs consists of electrons and holes injected from cathode and anode recombination in emitting material layer. The mobilities of injected electrons and holes are different. The mobility of holes is faster than that of electrons. In order to get high luminescence efficiency by recombine electrons and holes, the balance of their mobility must be set. The more complex thin film structure of OLED becomes, the more understanding about physical phenomenon in each interface is needed. This paper observed what the thickness change of hole transport layer has an affection through the below experiments. Moreover, this paper uses numerical analysis about carrier transport layer thickness change on the basis of these experimental results that agree with simulation results.

A Study on the Mechanical and Physical Properties of Sawdustboard combined with Plastic Chip (플라스틱칩 결체(結締) 톱밥보드의 기계적(機械的) 및 물리적(物理的) 성질(性質)에 관(關)한 연구(硏究))

  • Lee, Phil-Woo;Suh, Jin-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.44-55
    • /
    • 1987
  • In order to study the effect of sawdustboard combined with plastic chips, 0.5mm($T_1$), 1mm($T_2$), 1.4mm($T_3$) thick nylon fiber. polypropylene rope fiber(RP), and 0.23mm thick moth-proof polypropylene net fiber(NP) were cut into 0.5, 1, 2cm long plastic chips. Thereafter, sawdustboard combined with plastic chips prepared as the above and plastic non-combined sawdustboard(control) were manufactured into 3 types of one-, two-, and three layer with 5 or 10% combination level. By the discussions and results at this study, the significant conclusions of mechanical and physical properties were summarized as follows: 1. The MORs were shown in the order of 3 layer> 2 layer> 1 layer among plastic non-combined boards, and $T_3$ < $T_2$ < $T_1$ < RP (NP(5%) < NP(l0%) among plastic combined boards. In 2cm long plastic chip in 1 layer board, the highest strength through all the composition was recognized. 1 layer board showing the lower strength with 0.5cm plastic chip rendered to the bending strength improvement by 2 or 3 layer board composition. On the other hand, 2 or 3 layer combined with 1, 2cm long polypropylene net fiber chips incurred MOR's conspicuous decrease requiring optimum plastic chip combined level and consideration to combined type. 2. MOE in plastic non-combined 3 layer board exhibited sandwich construction effect by higher resin content application to surface layer in the order of 3layer>1layer>2layer with the highest stiffness of the board combined with polypropylene chip, while nylon chip-combined board had little difference from plastic non-combined board. In relevant to length and layer effect, 3 layer board combined with the 0.5cm long polypropylene net fiber chip in 5% and 10% combined level presented 34-43% and 44-76% stiffness increase against plastic non-combined board(control), respectively. Moreover, in 1 layer board, 30% stiffness increase with 10% against 5% combined level in the 1 and 2cm long polypropylene net fiber chip was obtained. 3. Stress at proportional limit(Spl) showing the fiber relationship (r: 0.81-0.97) between MOR presented in the order of 1 layer<2 layer<3 layer in plastic non-combined board. Correspondingly, combined effect by layer and plastic chip length was similar to MOR's. 4. Differently from previous properties(MOR, MOE, Spl). work to maximum load(Wml) of 2 layer board approached to that of 3 layer board. Conforming the above phenomenon. 2 layer combined with 0.5cm long polypropylene net fiber chip kept the greater work than 1 layer. The polypropylene combined board superior to nylon -and plastic non - combined board seemed to have greater anti - failing capacity. 5. Internal bond strength(IB), in contrast to MOR's tendency. showed in the order of T1

  • PDF

Sticking Characteristics in BiSrCaCuO Thin Film Fabricated by Layer-by-Layer Sputtering Method (순차 스퍼터법으로 제작한 BiSrCaCuO 박막의 부착 특성)

  • Cheon, Min-Woo;Park, Yong-Pil;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05d
    • /
    • pp.45-48
    • /
    • 2003
  • BiSrCaCuO thin films were fabricated by atomic layer-by-layer deposition using an ion beam sputtering method. 10 wt% and 90 wt% ozone mixed with oxygen were used with ultraviolet light irradiation to assist oxidation. At early stages of the atomic layer by layer deposition, two dimensional epitaxial growth which covers the substrate surface would be suppressed by the stress and strain caused by the lattice misfit, then three dimensional growth takes place. Since Cu element is the most difficult to oxidize, only Sr and Bi react with each other predominantly, and forms a buffer layer on the substrate in an amorphous-like structure, which is changed to $SrBi_2O_4$ by in-situ anneal.

  • PDF

Characteristics of BSCCO Thin Film by Layer-by-layer Deposition (순차 스퍼터 법에 의한 BSCCO 박막의 특성)

  • Lee, Hee-Kab;Park, Yong-Pil;Kim, Gwi-Yeol;Oh, Geum-Gon;Choi, Woon-Shik;Cho, Choon-Nam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.281-283
    • /
    • 2001
  • $Bi_{2}Sr_{2}CuO_{x}$(Bi-2201) thin films were fabricated by atomic layer-by-layer deposition using an ion bearn sputtering method. 10 wt% and 90 wt% ozone mixed with oxygen were used with ultraviolet light irradiation to assist oxidation. At early stages of the atomic layer by layer deposition. two dimensional epitaxial growth which covers the substrate surface would be suppressed by the stress and strain caused by the lattice misfit. then three dimensional growth takes place. Since Cu element is the most difficult to oxidize. only Sr and Bi react with each other predominantly. and forms a buffer layer on the substrate in an amorphous-like structure. which is changed to $SrBi_{2}O_{4}$ by in-situ anneal.

  • PDF