• Title/Summary/Keyword: layered nanocomposites

Search Result 91, Processing Time 0.021 seconds

Rheological Characterization of Polypropylene/Layered Silicate Nanocomposites Using Integral Constitutive Equations (적분형 구성방정식을 이용한 폴리프로필렌/층상 실리케이트 나노복합재료의 유변학적 특성 분석)

  • Lee, Seung-Hwan;Youn, Jae-Ryoun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.137-140
    • /
    • 2005
  • Exfoliated nanocomposites of polypropylene/layered silicate were prepared by a melt compounding process using maleic anhydride modified polypropylene (PP-g-MAH) and organoclay. It was found that polypropylene/layered silicate nanocomposites exhibited remarkable reinforcement compared with the pure polypropylene or conventional composite filled with agglomerated organoclay. The polypropylene /layered silicate nanocomposites showed stronger and earlier shear thinning behaviors and outstanding strain hardening behavior than pure polypropylene or other conventional composites in shear and uniaxial elongational flows, respectively. We simulated rheological modeling for the pure polymer matrix and polypropylene/layered silicate nanocomposite in shear and elongational flows using K-BKZ integral constitutive equation. The two types of K-BKZequations have been examined to describe experimental results of shear and uniaxial elongational viscosities of pure polypropylene and polypropylene/layered silicate nanocomposite.

  • PDF

Investigation of Cure Kinetics and Storage Stability of the o-Cresol Novolac Epoxy Nanocomposites with Pre-intercalated Phenolic Hardeners

  • Hwang, Tae-Yong;Lee, Jae-Wook;Lee, Sang-Min;Nam, Gi-Joon
    • Macromolecular Research
    • /
    • v.17 no.2
    • /
    • pp.121-127
    • /
    • 2009
  • The cure kinetics of the epoxy-layered, silicate nanocomposites were studied by differential scanning calorimetry under isothermal and dynamic conditions. The materials used in this study were o-cresol novolac epoxy resin and phenol novolac hardener, with organically modified layered silicates. Various kinetic parameters, including the reaction order, activation energy, and kinetic rate constants, were investigated, and the storage stability of the epoxy-layered silicate nanocomposites was measured. To synthesize the epoxy-layered silicate nanocomposites, the phenolic hardener underwent pre-intercalation by layered silicate. From the cure kinetics analyses, the organically modified layered silicate decreased the activation energy during cure reaction in the epoxy/phenolic hardener system. In addition, the storage stability of the nanocomposite with the pre-intercalated phenolic hardener was significantly increased compared to that of the nanocomposite with direct mixing of epoxy, phenolic hardener, and layered silicate. This was due to the protective effect of the reaction between onium ions and epoxide groups.

Experimental and Theoretical Study on Shear Flow Behavior of Polypropylene/Layered Silicate Nanocomposites

  • Lee, Seung-Hwan;Youn, Jae-Ryoun
    • Advanced Composite Materials
    • /
    • v.17 no.3
    • /
    • pp.191-214
    • /
    • 2008
  • Polypropylene/layered silicate nanocomposites containing maleic anhydride grafted polypropylene were prepared by melt compounding and their rheological behavior was investigated in shear flow. Transient and steady shear flows were simulated numerically by using the K-BKZ integral constitutive equation along with experimentally determined damping functions under dynamic oscillatory and step strain shear flows. Nonlinear shear responses were predicted with the K-BKZ constitutive equation using two different damping functions such as the Wagner and PSM models. It was observed that PP-g-MAH compatibilized PP/layered silicate nanocomposites have stronger and earlier shear thinning and higher steady shear viscosity than pure PP resin or uncompatibilized nanocomposites at low shear rate regions. Strong damping behavior of the PP/layered silicate nanocomposite was predicted under large step shear strain and considered as a result of the strain-induced orientation of the organoclay in the shear flow. Steady shear viscosity of the pure PP and uncompatibilized nanocomposite predicted by the K-BKZ model was in good agreement with the experimental results at all shear rate regions. However, the model was inadequate to predict the steady shear viscosity of PP-g-MAH compatibilized nanocomposites quantitatively because the K-BKZ model overestimates strain-softening damping behavior for PP/layered silicate nanocomposites.

Dielectric Properties of Epoxy/Organically Modified Layered Silicate Nanocomposites (에폭시/유기적으로 변경된 층상실리케이트가 충진 된 나노콤포지트의 유전특성)

  • Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.2
    • /
    • pp.188-193
    • /
    • 2008
  • Epoxy/Organically Modified Layered Silicate Nanocomposites were prepared by dispersing synthetic layered silicate modified with alkyl ammonium ions. In the dispersing process, the organically modified layered silicate were mixed in epoxy resin with shearing, and aggregation of the silicate were removed by centrifugal separation after mixing epoxy resin and silicates. Micrographs taken by transmission electron microscopy(TEM) indicate that the nanocomposites have a mixed morphology including both parallel silicate layers and exfoliated silicate layers area, As the thermal properties, the glass transition temperature of the nanocomposites was shifted to a higher temperature($+6^{\circ}C$)than pure epoxy. Furthermore, dispersion of OMLS will prevented relative permittivity from increasing at a high temperature above the glass transition temperature.

Long-term AC Electrical Treeing Behaviors of Epoxy/Layered Silicate Nanocomposites Prepared by a 3-Roll Mill

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.2
    • /
    • pp.85-88
    • /
    • 2012
  • Studies on the effects of layered silicate content on the AC electrical treeing and breakdown behaviors of epoxy/layered silicate nanocomposites were carried out in needle-plate electrode geometry. Wide-angle X-ray diffraction (WAXD) analysis and transmission electron microscopy (TEM) observation showed that 1 wt% of the multilayered silicate was fully exfoliated into nano-sized monolayers in the epoxy matrix however, over 3 wt% of the silicate was in an intercalated state. When 1 wt% layered silicates were incorporated, an electrical tree was initiated in 439 min and propagated at a speed of 2.3 ${\mu}m$/min after applying 781.4 kV/mm, representing a decreased in starting initiation time by a factor of 11.0 and increase in propagation speed by a factor 8.2 in comparison with neat epoxy resin. These values were in great decline after the layered silicate content was increased to 3wt% which implies that the exfoliated silicate blocked the tree initiation and propagation processes effectively. However the effect was largely decreased in the intercalated state.

Preparation and Characterization of Biodestructive Nanocomposites by Melt Intercalation Method (용융혼합법을 이용한 생붕괴성 나노복합재의 제조 및 분석)

  • Lee, Su-kyung;Youn, Jae-Ryoun
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.59-62
    • /
    • 2003
  • Nanocomposites are composite materials consisting of polymer matrix and layered silicate that are interacted in nanometer scale. Layered silicate based polymer nanocomposites have attracted considerable attention because of their excellent properties. Nanocomposites usually exhibit improved performance properties compared with conventional composites due to their unique phase morphology and improved interfacial properties. (omitted)

  • PDF

Thermal Characteristics of Epoxy-Nanocomposites filled Several Types Nano Layered Silicate Particles (나노층상실리케이트가 충진된 에폭시-나노콤포지트의 열적특성 연구)

  • Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.749-754
    • /
    • 2008
  • A large number of studies on the various characteristics of epoxy-layered silicate nanocomposites, such as electric and mechanical, morphology have been conducted and contributed to improve their characteristics. However, studies on the effects of its thermal conductivities in the thermal properties are not enough, even though there are some excellent evaluations for its insulation performances. Thermal properties will cause thermal degradation and significantly affect the reliability of these epoxy-layered silicate nanocomposites. In the results of the analysis of epoxy-layered silicate nanocomposites $T_g$ for various types of organoclays (10A, 15A, 20A, 30B, and 93A), it showed an excellent thermal property of 10A. Also, it represented low values in storage modulus and mechanical Tan (Delta) at a high temperature section 140$^{\circ}C$ and excellent thermal properties due to its movement to the high temperature section in the case of the property of 10A in the measurement of DMA elastics and mechanical losses. In the results of the measurement of thermal conductivities, power ultrasonic applications represented a significant increase in thermal conductivities in the case of the applications of power ultrasonic and planetary centrifugal mixers. Based on these results, it is necessary to perform related studies because it can be applied as useful materials for future power facilities applications in mold and impregnate insulation.

Degradation and Rheological Properties of Biodegradable Nanocomposites Prepared by Melt Intercalation Method

  • Lee, Su-Kyong;Seong, Dong-Gi;Youn, Jae-Ryoun
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.289-296
    • /
    • 2005
  • Biodegradable nanocomposites were prepared by mixing a polymer resin and layered silicates by the melt intercalation method. Internal structure of the nanocomposite was characterized by using the small angle X-ray scattering (SAXS) and transmission electron microscope (TEM). Nanocomposites having exfoliated and intercalated structures were obtained by employing two different organically modified nanoclays. Rheological properties in shear and extensional flows and biodegradability of nanocomposites were measured. In shear flow, shear thinning behavior and increased storage modulus were observed as the clay loading increased. In extensional flow, strain hardening behavior was observed in well dispersed system. Nanocomposites with the exfoliated structure had better biodegradability than nanocomposites with the intercalated structure or pure polymer.

Structural and Dielectric Properties of Epoxy-Organoclay Nanocomposites using Power Ultrasonic Dispersion (초음파 분산을 이용한 Epoxy-Organoclay 나노콤포지트 구조적 그리고 유전특성에 관한 연구)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1572-1578
    • /
    • 2008
  • The effect of the organoclay_10A nanoparticles on the DSC and Structural and Dielectrics Properties(1Hz-1MHz) for epoxy/Organoclay_10A Nanocomposites has been studied. Dielectric properties of epoxy-Organoclay nanocomposites were investigated at 1, 3, 5, 7, 9 filler concentration by weight. Epoxy nanocomposites samples were prepared with good dispersion of layered silicate using power ultrasonic method in the particles. As structural analysis, the interlayer spacing have decreased with filled nanoparticles contents increase using power ultrasonic dispersion. The maximum increase interlayered spacing was observed to decease for above 5wt% clay loading. The other hand, as decrease with concentration filler of the layered silicate were increased dispersion degree of nanoparticles in the matrix. The interesting dielectric properties for epoxy based nanocomposites systems are attributed to the large volume fraction of interfacesin the bulk of the material and the ensuring interactions between the charged nanoparticle surface and the epoxy chains.

Partial Discharge Resistance According to Frequency Acceleration Deterioration of Epoxy/Layered Silicate Nanocomposites (에폭시/층상실리케이트 나노콤포지트의 주파수 가속열화에 따른 부분방전 저항성)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1694-1699
    • /
    • 2013
  • Frequency accelerated partial discharge resistance (PDR) aging of epoxy/layered silicate nanocomposite with 1.5wt % additions of layered silicate was investigated in comparison with that of epoxy without layered silicate in terms of PD(partial discharge) erosion depth. It was found that the change in the erosion depth is far smaller in specimens with layered silicate than those without layered silicate nano particles. Frequency acceleration can be done from 60Hz to 1000Hz. But the depth of erosion is less proportional to frequency. Acceleration factor is almost 2 times between 500Hz and 1000Hz, but it is much less than about 8.3 times between 60Hz and 500Hz. This superior PD resistance is caused by the presence of nanofillers, anano-effect due to closely packed nanofillers, and strong chemical bonds at layered silicate nanofillers /resin interfaces.