• Title/Summary/Keyword: layout optimization

Search Result 273, Processing Time 0.033 seconds

A Characteristic Analysis of Ergonomic Console Layout Studies Using Optimization Techniques

  • Jung, Kihyo;Kim, Jaejung;You, Taekho;Lee, Baekhee;Lee, Wonsup;Park, Seikwon;Roh, Woongseok;You, Heecheon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.6
    • /
    • pp.733-740
    • /
    • 2012
  • Objective: The present study systematically analyzed the characteristics of ergonomic layout optimization methods by a comprehensive literature survey. Background: Although layout design methods for ergonomic placement of controls and displays on a console have been developed, understanding of their characteristics is lacking. Method: The present study analyzed layout optimization papers published past 20 years from the following four aspects: optimization model, optimization algorithm, design principle, and constraint/assumption. Results: The existing layout optimization methods based on various optimization techniques consider only a partial set of four layout principles(importance, frequency of use, sequence of use, and functional grouping) and two ergonomic criteria(visibility and reach). In addition, the existing methods oversimplify components in various sizes, shapes, and angles by assuming the equality of the components in size and shape. Conclusion: A more effective layout optimization method is needed which considers the layout principles and ergonomic criteria in a comprehensive manner and reflect the diversity of components in size and shape. Application: The identified characteristics on the existing layout optimization methods can be applicable to development of a better ergonomic console layout design method.

Optimization Algorithms for Site Facility Layout Problems Using Self-Organizing Maps

  • Park, U-Yeol;An, Sung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.6
    • /
    • pp.664-673
    • /
    • 2012
  • Determining the layout of temporary facilities that support construction activities at a site is an important planning activity, as layout can significantly affect cost, quality of work, safety, and other aspects of the project. The construction site layout problem involves difficult combinatorial optimization. Recently, various artificial intelligence(AI)-based algorithms have been applied to solving many complex optimization problems, including neural networks(NN), genetic algorithms(GA), and swarm intelligence(SI) which relates to the collective behavior of social systems such as honey bees and birds. This study proposes a site facility layout optimization algorithm based on self-organizing maps(SOM). Computational experiments are carried out to justify the efficiency of the proposed method and compare it with particle swarm optimization(PSO). The results show that the proposed algorithm can be efficiently employed to solve the problem of site layout.

THE GLOBAL OPTIMAL SOLUTION TO THE THREE-DIMENSIONAL LAYOUT OPTIMIZATION MODEL WITH BEHAVIORAL CONSTRAINTS

  • Jun, Tie;Feng, Enmin
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.313-321
    • /
    • 2004
  • In this paper we study the problem of three-dimensional layout optimization on the simplified rotating vessel of satellite. The layout optimization model with behavioral constraints is established and some effective and convenient conditions of performance optimization are presented. Moreover, we prove that the performance objective function is locally Lipschitz continuous and the results on the relations between the local optimal solution and the global optimal solution are derived.

Layout Optimization Method of Railway Transportation Route Based on Deep Convolution Neural Network

  • Cong, Qiao;Qifeng, Gao;Huayan, Xing
    • Journal of Information Processing Systems
    • /
    • v.19 no.1
    • /
    • pp.46-54
    • /
    • 2023
  • To improve the railway transportation capacity and maximize the benefits of railway transportation, a method for layout optimization of railway transportation route based on deep convolution neural network is proposed in this study. Considering the transportation cost of railway transportation and other factors, the layout model of railway transportation route is constructed. Based on improved ant colony algorithm, the layout model of railway transportation route was optimized, and multiple candidate railway transportation routes were output. Taking into account external information such as regional information, weather conditions and actual information of railway transportation routes, optimization of the candidate railway transportation routes obtained by the improved ant colony algorithm was performed based on deep convolution neural network, and the optimal railway transportation routes were output, and finally layout optimization of railway transportation routes was realized. The experimental results show that the proposed method can obtain the optimal railway transportation route, the shortest transportation length, and the least transportation time, maximizing the interests of railway transportation enterprises.

Multi-floor Layout for the Liquefaction Process Systems of LNG FPSO Using the Optimization Technique (최적화 기법을 이용한 LNG FPSO 액화 공정 장비의 다층 배치)

  • Ku, Nam-Kug;Lee, Joon-Chae;Roh, Myung-Il;Hwang, Ji-Hyun;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.1
    • /
    • pp.68-78
    • /
    • 2012
  • A layout of an LNG FPSO should be elaborately determined as compared with that of an onshore plant because many topside process systems are installed on the limited area; the deck of the LNG FPSO. Especially, the layout should be made as multi-deck, not single-deck and have a minimum area. In this study, a multi-floor layout for the liquefaction process, the dual mixed refrigerant(DMR) cycle, of LNG FPSO was determined by using the optimization technique. For this, an optimization problem for the multi-floor layout was mathematically formulated. The problem consists of 589 design variables representing the positions of topside process systems, 125 equality constraints and 2,315 inequality constraints representing limitations on the layout of them, and an objective function representing the total layout cost. To solve the problem, a hybrid optimization method that consists of the genetic algorithm(GA) and sequential quadratic programming(SQP) was used in this study. As a result, we can obtain a multi-floor layout for the liquefaction process of the LNG FPSO which satisfies all constraints related to limitations on the layout.

AN IMPROVED COMBINATORIAL OPTIMIZATION ALGORITHM FOR THE THREE-DIMENSIONAL LAYOUT PROBLEM WITH BEHAVIORAL CONSTRAINTS

  • Jun, Tie;Wang, Jinzhi;Feng, Enmin
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.283-290
    • /
    • 2008
  • This paper is motivated by the problem of fitting a group of cuboids into a simplified rotating vessel of the artificial satellite. Here we introduce a combinatorial optimization model which reduces the three-dimensional layout problem with behavioral constraints to a finite enumeration scheme. Moreover, a global combinatorial optimization algorithm is described in detail, which is an improved graph-theoretic heuristic.

  • PDF

Stiffener Layout Optimization to Maximize Natural Frequencies of a Curved Three-Dimensional Shell Structure (구부러진 3차원 박판 구조물의 고유 진동수 극대화를 위한 보강재 배치 최적화)

  • Lee, Joon-Ho;Park, Youn-Sik;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.954-957
    • /
    • 2004
  • Based on the authors' previous work, where a geometric constraint handling technique for stiffener layout optimization problem using geometry algorithms was proposed, stiffener layout optimization to maximize natural frequencies of a curved three-dimensional shell structure was performed with a projection method. The original geometry of the shell structure was first projected on a two-dimensional plane, and then the whole optimization process was performed with the projected geometry of the shell except that the original shell structure was used for the eigenproblem solving. The projection method can be applied to baseline structures with a one-to-one correspondence between original and projected geometries such as automobile hoods and roofs.

  • PDF

Ship Pipe Layout Optimization using Genetic Algorithm (유전자 알고리듬을 이용한 선박용 파이프 경로 최적화)

  • Park, Cheol-Woo;Cheon, Ho-Jeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.4
    • /
    • pp.469-478
    • /
    • 2012
  • This study aims to discover the optimal pipe layout for a ship, which generally needs a lot of time, efforts and experiences. Genetic algorithm was utilized to search for the optimum. Here the optimum stands for the minimum pipe length between two given points. Genetic algorithm is applied to planar pipe layout problems to confirm plausible and efficiency. Sub-programs are written to find optimal layout for the problems. Obstacles are laid in between the starting point and the terminal point. Pipe is supposed to bypass those obstacles. Optimal layout between the specified two points can be found using the genetic algorithm. Each route was searched for three case models in two-dimensional plane. In consequence of this, it discovered the optimum route with the minimized distance in three case models. Through this study, it is possible to apply optimization of ship pipe route to an actual ship using genetic algorithm.

BIM Space Layout Optimization by Space Syntax and Expert System (공간구문론과 전문가시스템을 활용한 BIM 공간배치 최적화 방안)

  • Kwon, Ocheol;Cho, Joowon
    • Korean Journal of Computational Design and Engineering
    • /
    • v.22 no.1
    • /
    • pp.18-27
    • /
    • 2017
  • As building space constitution and layout are critical for satisfying the building owner and users, their optimization is so important in the design process. However it's not always simple to set up objective criteria for the space layout optimization for different requirements and the architects mostly depend on their own experience for these. This study is to suggest a way to make up for this issue by referencing and deducing the space layout based on the given BIM space information and existing knowledge. For this purpose, the Space Syntax is applied to extract the information from a space model and an Expert System is used to make the best use of the relevant knowledge. Based on the Integration indexes for all the spaces, we could compare the space layout alternatives and determine the best selection for different accessibility conditions.

Multi-floor Layout Model for Topsides of Floating Offshore Plant using the Optimization Technique (최적화 기법을 이용한 부유식 해양 플랜트 상부 구조의 다층 배치 모델)

  • Jeong, Se-Yong;Roh, Myung-Il;Shin, Hyunkyoung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.1
    • /
    • pp.77-87
    • /
    • 2015
  • For a floating offshore plant such as FPSO(Floating, Production, Storage, and Off-loading unit), various equipment should be installed in the restricted space, as compared with an onshore plant. The requirement for an optimal layout method of the plant has been increased in these days. Thus, a layout method of the floating offshore plant was proposed in this study. For this, an optimization problem for layout design was mathematically formulated, and then an optimization algorithm based on the genetic algorithm was implemented with C++ language in order to solve it. Finally, the proposed method was applied to an example of FPSO topsides. As a result, it was shown that the proposed method can be applied to layout design of the floating offshore plant such as FPSO.