• Title/Summary/Keyword: leachate concentration

Search Result 229, Processing Time 0.029 seconds

A new approach for detoxification of landfill leachate using Trametes trogii

  • Smaoui, Yosr;Fersi, Mariem;Mechichi, Tahar;Sayadi, Sami;Bouzid, Jalel
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.144-149
    • /
    • 2019
  • Landfill leachate constitutes one of the most polluting wastewaters. Their treatment was considered difficult due to the presence of high concentration of organic matter, ammonia, toxic organic compounds and heavy metals. Biological processes were found to be effective in several cases, but they are limited by the presence of inhibitory compounds in leachate. In this study we develop a biological process for the leachate biodetoxification using Trametes trogii (T. trogii; CLBE55). Results show that laccase activity, mycelia growth and chemical oxygen demand (COD) removal efficiencies varied depending on the leachate and ammonium concentration. Indeed T. trogii was able to grow in the presence of low concentration of landfill leachate of 10 and 30%. In fact, the biomass produced was 4.7 and 3.7 g/L, respectively leading to a COD removal of 66 and 53%, respectively. However, when the concentration of the introduced leachate exceeds 30%, the treatment efficiency and particularly the COD removal decreases to reach 15% at 100% leachate. The effect of the ammonia was also studied and results showed that the addition of 5 g/L of ammonia inhibited totally the production of laccase and the COD removal.

Effects of Waste Leachate on Permeability of Marine Clay (해성점토의 투수성에 대한 폐기물 침출수의 영향)

  • 강병희;장경수
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.37-42
    • /
    • 1995
  • The laboratory hydraulic conducti vita tests with rigid wall permeameter were performed to study the effects of waste leachate on the permeability of a marine clay. The marine clay and waste leachate for this study were sampled from Kimpo Wastefills, and the hydraulic gradients applied to the clay specimens aTe relatively high from 37.5 to 225. The test results show that the permeability of a marine clay is increased with increasing the concentration of leachate and with decreasing the hydraulic gradient. And also both the liquid limit and the plasticity index of the marine clay miRed with waste leachate decrease with increasing the concentration of leachate.

  • PDF

The Characteristic and Control of Contaminant Transport through the Subsurface of Nanjido Landfill (난지도 매립장 지반을 통한 오염이동 특성과 제어)

  • 장연수;이광열
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 1994
  • The contaminant migration through the subsurface of Nanjido landfill is studied using a 2-D finite element model of contaminant transport. The leachate mounding caused by the installation of partial slurry wall around the pheriperal area of the Landfill is analysed using the finite difference model of groundwater flow. Model parameters were validated using in-situ concentration data and the behavior of the transport next 30 years is predicted. The sensitivities of chloride concentration by the change of model parameters, e.g. leachate mounding in the Landfill and the dispersivity are analysed. The results of the analyses show that the maximum chloride concentration level near Han River caused by the leachate of Nanjido Landfill would be 1488mg/1 and comes 17 years after the landfill closure. Increase of the leachate concentration is caused by the increase of both the leachate mounding and the dispersivity. However, the rate of concentration increase becomes higher with the rise of leachate mounding level, while it tends to converge a certain concentration with the increase of the dispersivity.

  • PDF

The Constituent Analysis of Leachate in Landfill Site (매립장에서 발생되는 침출수의 성분분석)

  • 한상우;김귀자;안생민;권영수;박재주
    • Environmental Analysis Health and Toxicology
    • /
    • v.5 no.1_2
    • /
    • pp.51-55
    • /
    • 1990
  • The ultimate Wastes generated after being treated safely and properly were land-filled in Wha Sung Treatment Plant, that of specific hazardous Wastes. There are three kinds of wastes being landfilled, which are sludges, ashes, and solidificated wastes with cement. This research scrutinizes the variations of leachate which originated from landfilled wastes amount to 30,000 ton with analizing the constituent, pH and concentration of wastes once per month since september, 1987. Now, we have some conclusions as followings; 1. The longer retention time of wastes in landfill site and the more quantity of filling-up, the closer pH of leachate to alkalinity. 2. As the quantity of copper and its compounds is over 90 percent of constituents loundfilled wastes, so the copper of leachate goes above treatment criteria. 3. There lis relationship between pH of leachate and eruption of copper and its compounds. The higher pH of leachate, the more secured copper and its compounds. So, we learn that solidificated wastes with cement is more secured than sludges and ashes. 4. The pH and concentration of copper in leachate is low in July and August, this is passing phenomenon which diluted by rainfall in rainy days. 5. The quantities of cadmium and lead of leachate was not over the treatment criteria.

  • PDF

Characteristics of Leachate Quantity and Quality with Different Composition of Municipal Solid Waste in Solid Waste Landfill (매립폐기물 성상변화에 따른 침출수 수량 및 수질특성에 관한 연구)

  • Park, Jin-Kyu;Kim, Hye-Jin;Jeong, Sae-Rom;Lee, Nam-Hoon;Kim, Suk-Chan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.2
    • /
    • pp.109-117
    • /
    • 2007
  • In order to investigate the quantitative and qualitative properties of leachate with different composition of MSW in solid waste landfill, three lysimeters filled with bottom ash only (Lysimeter A), bottom ash 70%+municipal solid waste 30% (Lysimeter B), and municipal solid waste only (Lysimeter C) respectively were operated under actual meteorological conditions. From the results, Lysimeter A and Lysimeter B were much higher than Lysimeter C in terms of cumulative generation rates of leachate. The pH in leachate from Lysimeter A are in the range of pH 9 to 11, however, the pH of the leachate was gradually changed to the neutral with time. In the case of $Cl^-$, leachates from Lysimeter A and B with bottom ash have high $Cl^-$ concentration whereas leachate produced from Lysimeter C has low $Cl^-$ concentration. In the Lysimeter C with municipal solid waste only, concentration of organic materials in the leachate was much higher than that of leachate produced from the other Lysimeters.

  • PDF

A Study on the Leaching of Heavy Metals by Municipal Solid Waste Landfill Leachate (폐기물 매립지 침출수에 의한 중금속 용출에 관한 연구)

  • Jung, Jong-Gwan;Jang, Won;Park, Young-Suk
    • Journal of Environmental Impact Assessment
    • /
    • v.6 no.1
    • /
    • pp.105-110
    • /
    • 1997
  • Sanitary landfill is a general method as a final disposal of municipal solid waste(MSW), therefore leachate characteristics are very various as lime goes by because of highly concentrated organic acids are contained non biodegradable COD. So it is hard to abide by the mandatory standards of discharge eventhough applying the physicochemical and biological processes to treat the leachate. The process of treating leachate are determined by the degree of removal and components, but they are highly contained organic materials. It is a removal method to use jointly with the physicochemical process if the hard and fast rule is needed. The critical components of material are COD, ammonia, salts and heavy metals in the case of treating biologically. Biological process is to use metabolism of microorganism, therefore it is a desirable condition which heavy metals are not contained, because they acting as an inhibitor of enzyme. Of these are contained, organic decomposition and synthetic function of microorganisms decrease significantly. Consequently, this research paper lays emphasis on the concentration of heavy metals in leachate and for the purpose of forecasting the factors which are affecting the leaching of metalic waste in some degree, experimented the various reacting conditions. 1. When the concentration of heavy metals in leachate is in comparison with the level eluted after reaction, at pH 7.9 the result of reaction for PCB to CCL scrap showed that Zn, Mn, Cu was more eluted 11.6 times, 340.3 times, and 2,705.5 times respectively than the leachate undiluted solution. 2. At the condition of strong acid pH 4.7, the concentration of heavy metals in EM undiluted solution showed that Zn, Mn, Cu was more eluted 26.5 times, 147.3 times, and 3,656.3 times respectively than leachate undiluted solution. 3. When the ratio leachate to EM was 50 vs 50(V/V%), Mn was more eluted 198.7 times than leachate undiluted solution, but Zn and Cu do not show the meaningful results. 4. The color of landfill leachate was black-brown. And fulvic acid that is main ingredient of NBD COD contained, oxygen of 44~50%. For that reason, I estimated that the level of Zn, Mn, Cu was higher than the case of leachate. 5. COD of leachate from general landfill is difficult to remove. Because the solution of heavy metals is improved by the character of leachate(pH & ingredient of oxygen etc.) hence the Mn, Cu, Zn act as disturbing factor, the biochemical treatment is hard. Therefore the type of PCB & CCL scrap, iron, aluminum contained metals need to previously separate from general wastes as much as possible.

  • PDF

Complex Dielectric Constant of Soil Contaminated by Landfill Leachate with Measured Frequency (매립지 침출수로 오염된 토양의 측정주파수에 따른 유전특성 변화)

  • Oh Myoung-Hak;Bang Sun-Young;Park Jun-Boum;Lee Ju-Hyung;Lee Seock-Heon;Ahn Kyu-Hong
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.3
    • /
    • pp.1-11
    • /
    • 2004
  • To evaluate the applicability of dielectric constant measurement method on the geoenvironmental investigation of subsurface contaminated by landfill leachate, the analysis on dielectric characteristics of sand containing contaminated pore water by landfill leachate was performed. The separate real and imaginary parts of dielectric constant were investigated in the frequency range of 75kHz to 12MHz. The real part of dielectric constant increased at the lower frequency wherea the real part of dielectric constant decreased at the higher frequency as the concentration of leachate increased. These results can be explained by the frequency dependence of space charge polarization and orientation polarization. The imaginary part of dielectric constant on the contaminated sand with leachate increased with their concentration for whole frequency range. These results are caused by the increase of energy loss due to the enhancement of conduction in soil with leachate concentration. The results in this study indicate that the dielectric constant measurement method has potential in evaluating the contaminated soil and pore water by landfill leachate.

Leachate Concentration to Groundwater Considering Source Depletion for Risk Assessment in Vadose Zone of Contaminated Sites (오염부지 위해성평가 시 불포화대 오염원 고갈을 고려한 토양유출수 농도 결정)

  • Chang, Sun Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.583-592
    • /
    • 2020
  • This study assessed source depletion in the vadose zones of contaminated sites. The possible range of infiltration rate in Korea was statistically analyzed. The results showed a trend of decreasing leachate concentration of 13 pollutants used for risk assessment. Among them, benzene, ethylbenzene, toluene, and xylene showed a lower leachate concentration in groundwater over time due to their low distribution coefficient and also possible biodegradation effects. The average values of the relative concentration could be taken as a default index due to a very small range of uncertainties. In the case of heavy metals, it was shown that the leachate concentration in a pollutant does not decrease over time. Considering the annually different infiltration, a site-specific source-depletion scenario was applied to Cheongju in North Chungcheong Province. The result was expressed as a time series of the relative concentration of the leachate concentration, and this was compared to the trend by averaged Korean infiltration. Finally, an open-source code that used Python was used to help calculate the leachate concentration by this site-specific infiltration scenario.

Coagulation Treatment of Landfill Leachate Using Acid Mine Drainage(AMD) (산성폐광폐수를 이용한 매립지 침출수의 응집처리)

  • 최봉종;이승목;이상호
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.129-133
    • /
    • 2000
  • The objective of this study was to invetigate the coagulation effects of landfill leachate by using Acid Mine Drainage(AND). The coagulation efficiency was investigated by mixing landfill leachate with F $e^{+3}$ solution earned by oxidation of pyrite(AMD). In the results of this experiment, it was found that the amount of removed COD and SS was approximately 30% respectively by mixing at the ratio of AMD three to leachate one. And it showed highest turbidity removal efficiency at all mixing ratio. Concentration of Fe was decreased with increasing mixing ratio, however it was increased inversely at mixing ratio 4. Optimal mixing ratio was 3 at the results obtained by leachate coagulation experiments. Also removal efficiency at mixing ratio 3 corresponded to 500mg/$\ell$ of FeC $l_3$ dosage. it was suggested that pretreatment by mixing of AMD and leachate remove both suspended organic material of leachate and metal of AMD.

  • PDF

A Study on the Variation of Resistivity of the Unsaturated Sandy Soils Contaminated by Leachate (침출수로 오염된 불포화사질토의 전기비저항 변화에 대한 연구)

  • Yoon, Chun-Gyeong;Yoo, Chan
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.2
    • /
    • pp.112-122
    • /
    • 1998
  • Measurement of electrical resistivity in soils has been used for many years with purpose of estimating in situ porosity or density. Recently electrical resistivity has also been used as an indicator of soil contaimination. This paper presents the result of laboratory experiment to investigate the resistivity variation in contaminated sandy soils. The results can be used with the Cone Penetrometer Test (CPT) result to analyse ground condition. In the experiment, the water content and leachate concentration of soils were controlled by groundwater and leachate, and then the resistivity measurement was made with 'STING-R1' by Advanced Geosciences Inc. In the case of using groundwater, the resistivity was in the range of over 1000${\omega}{\cdot}m$, but in the case of using polluted water by leachate, the resistivity decreased significantly down to 10~ 100${\omega}{\cdot}m$ for the same moisture content. Also the resistivity varied according to the degree of saturatrion. Therefore, if soil is contaminated by leachate, the CPT with electrical resistivity sensor might be used to investigate the contamination status and plume migration. But exact component of leachate and the pollutant concentration are still hard to identify.

  • PDF