• Title/Summary/Keyword: learning vector quantization

Search Result 99, Processing Time 0.035 seconds

Distributed controller using Learning Vector Quantization algorithm in SDN environment (SDN 환경에서 Learning Vector Quantization 알고리즘을 이용한 분산 컨트롤러)

  • Yoo, Seung-Eon;Lym, Hwan-Hee;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.207-208
    • /
    • 2018
  • 본 논문에서는 기계학습의 하나인 Learning Vector Quantization 알고리즘을 이용하여 컨트롤러 순서를 정하는 모델을 제안하였다. 제안한 모델은 모든 컨트롤러 정보를 수집하여 Learning Vector Quantization의 LVQ1와 LVQ2 기법을 이용하여 컨트롤러의 순서를 정한다. 이를 통해, 효율적인 컨트롤러 동기화가 이뤄질 것으로 기대된다.

  • PDF

Fuzzy Learning Vector Quantization based on Fuzzy k-Nearest Neighbor Prototypes

  • Roh, Seok-Beom;Jeong, Ji-Won;Ahn, Tae-Chon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.2
    • /
    • pp.84-88
    • /
    • 2011
  • In this paper, a new competition strategy for learning vector quantization is proposed. The simple competitive strategy used for learning vector quantization moves the winning prototype which is the closest to the newly given data pattern. We propose a new learning strategy based on k-nearest neighbor prototypes as the winning prototypes. The selection of several prototypes as the winning prototypes guarantees that the updating process occurs more frequently. The design is illustrated with the aid of numeric examples that provide a detailed insight into the performance of the proposed learning strategy.

An Improvement of LVQ3 Learning Using SVM (SVM을 이용한 LVQ3 학습의 성능개선)

  • 김상운
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.9-12
    • /
    • 2001
  • Learning vector quantization (LVQ) is a supervised learning technique that uses class information to move the vector quantizer slightly, so as to improve the quality of the classifier decision regions. In this paper we propose a selection method of initial codebook vectors for a teaming vector quantization (LVQ3) using support vector machines (SVM). The method is experimented with artificial and real design data sets and compared with conventional methods of the condensed nearest neighbor (CNN) and its modifications (mCNN). From the experiments, it is discovered that the proposed method produces higher performance than the conventional ones and then it could be used efficiently for designing nonparametric classifiers.

  • PDF

Abnormal Vibration Diagnostics Algorithm of Rotating Machinery Using Self-Organizing Feature Map nad Learing Vector Quantization (자기조직화특징지도와 학습벡터양자화를 이용한 회전기계의 이상진동진단 알고리듬)

  • 양보석;서상윤;임동수;이수종
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.331-337
    • /
    • 2000
  • The necessity of diagnosis of the rotating machinery which is widely used in the industry is increasing. Many research has been conducted to manipulate field vibration signal data for diagnosing the fault of designated machinery. As the pattern recognition tool of that signal, neural network which use usually back-propagation algorithm was used in the diagnosis of rotating machinery. In this paper, self-organizing feature map(SOFM) which is unsupervised learning algorithm is used in the abnormal defect diagnosis of rotating machinery and then learning vector quantization(LVQ) which is supervised learning algorithm is used to improve the quality of the classifier decision regions.

  • PDF

Forward Viterbi Decoder applied LVQ Network (LVQ Network를 적용한 순방향 비터비 복호기)

  • Park Ji woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12A
    • /
    • pp.1333-1339
    • /
    • 2004
  • In IS-95 and IMT-2000 systems using variable code rates and constraint lengths, this paper limits code rate 1/2 and constraint length 3 and states the effective reduction of PM(Path Metric) and BM(Branch Metric) memories and arithmetic comparative calculations with appling PVSL(Prototype Vector Selecting Logic) and LVQ(Learning Vector Quantization) in neural network to simplify systems and to decode forwardly. Regardless of extension of constraint length, this paper presents the new Vierbi decoder and the appied algorithm because new structure and algorithm can apply to the existing Viterbi decoder using only uncomplicated application and verifies the rationality of the proposed Viterbi decoder through VHDL simulation and compares the performance between the proposed Viterbi decoder and the existing.

Study on the Effective Compensation of Quantization Error for Machine Learning in an Embedded System (임베디드 시스템에서의 양자화 기계학습을 위한 효율적인 양자화 오차보상에 관한 연구)

  • Seok, Jinwuk
    • Journal of Broadcast Engineering
    • /
    • v.25 no.2
    • /
    • pp.157-165
    • /
    • 2020
  • In this paper. we propose an effective compensation scheme to the quantization error arisen from quantized learning in a machine learning on an embedded system. In the machine learning based on a gradient descent or nonlinear signal processing, the quantization error generates early vanishing of a gradient and occurs the degradation of learning performance. To compensate such quantization error, we derive an orthogonal compensation vector with respect to a maximum component of the gradient vector. Moreover, instead of the conventional constant learning rate, we propose the adaptive learning rate algorithm without any inner loop to select the step size, based on a nonlinear optimization technique. The simulation results show that the optimization solver based on the proposed quantized method represents sufficient learning performance.

Realization of Forward Real-time Decoder using Sliding-Window with decoding length of 6 (복호길이 6인 Sliding-Window를 적용한 순방향 실시간 복호기 구현)

  • Park Ji woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4C
    • /
    • pp.185-190
    • /
    • 2005
  • In IS-95 and IMT-2000 systems using variable code rates and constraint lengths, this paper limits code rate 1/2 and constraint length 3 and realizes forward real-time decoder using Sliding-Window with decoding length 6 and PVSL(Prototype Vector Selecting Logic), LVQ(Learning Vector Quantization) in Neural Network. In comparison condition to theoretically constrained AWGN channel environment at $S/(N_{0}/2)=1$ I verified the superiority of forward real-time decoder through hard-decision and soft-decision comparison between Viterbi decoder and forward real-time decoder such as BER and Secure Communication and H/W Structure.

Face Recognition using Non-negative Matrix Factorization and Learning Vector Quantization (비음수 행렬 분해와 학습 벡터 양자화를 이용한 얼굴 인식)

  • Jin, Donghan;Kang, Hyunchul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.55-62
    • /
    • 2017
  • Non-negative matrix factorization (NMF) is one of the typical parts-based representation in which images are expressed as a linear combination of basis vectors that show the lcoal features or objects in the images. In this paper, we represent face images using various NMF methods and recognize their face identities based on extracted features using a learning vector quantization. We analyzed the various NMF methods by comparing extracted basis vectors. Also we confirmed the availability of NMF to the face recognition by verification of recognition rate of the various NMF methods.

Novelty Detection using SOM-based Methods (자기구성지도 기반 방법을 이용한 이상 탐지)

  • Lee, Hyeong-Ju;Jo, Seong-Jun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.599-606
    • /
    • 2005
  • Novelty detection involves identifying novel patterns. They are not usually available during training. Even if they are, the data quantity imbalance leads to a low classification accuracy when a supervised learning scheme is employed. Thus, an unsupervised learning scheme is often employed ignoring those few novel patterns. In this paper, we propose two ways to make use of the few available novel patterns. First, a scheme to determine local thresholds for the Self Organizing Map boundary is proposed. Second, a modification of the Learning Vector Quantization learning rule is proposed so that allows one to keep codebook vectors as far from novel patterns as possible. Experimental results are quite promising.

  • PDF

Vector quantization codebook design using activity and neural network (활동도와 신경망을 이용한 벡터양자화 코드북 설계)

  • 이경환;이법기;최정현;김덕규
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.5
    • /
    • pp.75-82
    • /
    • 1998
  • Conventional vector quantization (VQ) codebook design methods have several drawbacks such as edge degradation and high computational complexity. In this paper, we first made activity coordinates from the horizonatal and the vertical activity of the input block. Then it is mapped on the 2-dimensional interconnected codebook, and the codebook is designed using kohonen self-organizing map (KSFM) learning algorithm after the search of a codevector that has the minumum distance from the input vector in a small window, centered by the mapped point. As the serch area is restricted within the window, the computational amount is reduced compared with usual VQ. From the resutls of computer simulation, proposed method shows a better perfomance, in the view point of edge reconstruction and PSNR, than previous codebook training methods. And we also obtained a higher PSNR than that of classified vector quantization (CVQ).

  • PDF