• Title/Summary/Keyword: linear Bayes method

Search Result 32, Processing Time 0.032 seconds

How to Improve Classical Estimators via Linear Bayes Method?

  • Wang, Lichun
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.6
    • /
    • pp.531-542
    • /
    • 2015
  • In this survey, we use the normal linear model to demonstrate the use of the linear Bayes method. The superiorities of linear Bayes estimator (LBE) over the classical UMVUE and MLE are established in terms of the mean squared error matrix (MSEM) criterion. Compared with the usual Bayes estimator (obtained by the MCMC method) the proposed LBE is simple and easy to use with numerical results presented to illustrate its performance. We also examine the applications of linear Bayes method to some other distributions including two-parameter exponential family, uniform distribution and inverse Gaussian distribution, and finally make some remarks.

Bayes Estimation in a Hierarchical Linear Model

  • Park, Kuey-Chung;Chang, In-Hong;Kim, Byung-Hwee
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 1998
  • In the problem of estimating a vector of unknown regression coefficients under the sum of squared error losses in a hierarchical linear model, we propose the hierarchical Bayes estimator of a vector of unknown regression coefficients in a hierarchical linear model, and then prove the admissibility of this estimator using Blyth's (196\51) method.

  • PDF

Hierarchical Bayes Analysis of Longitudinal Poisson Count Data

  • Kim, Dal-Ho;Shin, Im-Hee;Choi, In-Sun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.13 no.2
    • /
    • pp.227-234
    • /
    • 2002
  • In this paper, we consider hierarchical Bayes generalized linear models for the analysis of longitudinal count data. Specifically we introduce the hierarchical Bayes random effects models. We discuss implementation of the Bayes procedures via Markov chain Monte Carlo (MCMC) integration techniques. The hierarchical Baye method is illustrated with a real dataset and is compared with other statistical methods.

  • PDF

Bayes Prediction for Small Area Estimation

  • Lee, Sang-Eun
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.2
    • /
    • pp.407-416
    • /
    • 2001
  • Sample surveys are usually designed and analyzed to produce estimates for a large area or populations. Therefore, for the small area estimations, sample sizes are often not large enough to give adequate precision. Several small area estimation methods were proposed in recent years concerning with sample sizes. Here, we will compare simple Bayesian approach with Bayesian prediction for small area estimation based on linear regression model. The performance of the proposed method was evaluated through unemployment population data form Economic Active Population(EAP) Survey.

  • PDF

Utterance Verification Using Anti-models Based on Neighborhood Information (이웃 정보에 기초한 반모델을 이용한 발화 검증)

  • Yun, Young-Sun
    • MALSORI
    • /
    • no.67
    • /
    • pp.79-102
    • /
    • 2008
  • In this paper, we investigate the relation between Bayes factor and likelihood ratio test (LRT) approaches and apply the neighborhood information of Bayes factor to building an alternate hypothesis model of the LRT system. To consider the neighborhood approaches, we contemplate a distance measure between models and algorithms to be applied. We also evaluate several methods to improve performance of utterance verification using neighborhood information. Among these methods, the system which adopts anti-models built by collecting mixtures of neighborhood models obtains maximum error rate reduction of 17% compared to the baseline, linear and weighted combination of neighborhood models.

  • PDF

Introduction to variational Bayes for high-dimensional linear and logistic regression models (고차원 선형 및 로지스틱 회귀모형에 대한 변분 베이즈 방법 소개)

  • Jang, Insong;Lee, Kyoungjae
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.3
    • /
    • pp.445-455
    • /
    • 2022
  • In this paper, we introduce existing Bayesian methods for high-dimensional sparse regression models and compare their performance in various simulation scenarios. Especially, we focus on the variational Bayes approach proposed by Ray and Szabó (2021), which enables scalable and accurate Bayesian inference. Based on simulated data sets from sparse high-dimensional linear regression models, we compare the variational Bayes approach with other Bayesian and frequentist methods. To check the practical performance of the variational Bayes in logistic regression models, a real data analysis is conducted using leukemia data set.

On using Bayes Risk for Data Association to Improve Single-Target Multi-Sensor Tracking in Clutter (Bayes Risk를 이용한 False Alarm이 존재하는 환경에서의 단일 표적-다중센서 추적 알고리즘)

  • 김경택;최대범;안병하;고한석
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.159-162
    • /
    • 2001
  • In this Paper, a new multi-sensor single-target tracking method in cluttered environment is proposed. Unlike the established methods such as probabilistic data association filter (PDAF), the proposed method intends to reflect the information in detection phase into parameters in tracking so as to reduce uncertainty due to clutter. This is achieved by first modifying the Bayes risk in Bayesian detection criterion to incorporate the likelihood of measurements from multiple sensors. The final estimate is then computed by taking a linear combination of the likelihood and the estimate of measurements. We develop the procedure and discuss the results from representative simulations.

  • PDF

Estimation of entropy of the inverse weibull distribution under generalized progressive hybrid censored data

  • Lee, Kyeongjun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.3
    • /
    • pp.659-668
    • /
    • 2017
  • The inverse Weibull distribution (IWD) can be readily applied to a wide range of situations including applications in medicines, reliability and ecology. It is generally known that the lifetimes of test items may not be recorded exactly. In this paper, therefore, we consider the maximum likelihood estimation (MLE) and Bayes estimation of the entropy of a IWD under generalized progressive hybrid censoring (GPHC) scheme. It is observed that the MLE of the entropy cannot be obtained in closed form, so we have to solve two non-linear equations simultaneously. Further, the Bayes estimators for the entropy of IWD based on squared error loss function (SELF), precautionary loss function (PLF), and linex loss function (LLF) are derived. Since the Bayes estimators cannot be obtained in closed form, we derive the Bayes estimates by revoking the Tierney and Kadane approximate method. We carried out Monte Carlo simulations to compare the classical and Bayes estimators. In addition, two real data sets based on GPHC scheme have been also analysed for illustrative purposes.

Development and evaluation of dam inflow prediction method based on Bayesian method (베이지안 기법 기반의 댐 예측유입량 산정기법 개발 및 평가)

  • Kim, Seon-Ho;So, Jae-Min;Kang, Shin-Uk;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.7
    • /
    • pp.489-502
    • /
    • 2017
  • The objective of this study is to propose and evaluate the BAYES-ESP, which is a dam inflow prediction method based on Ensemble Streamflow Prediction method (ESP) and Bayesian theory. ABCD rainfall-runoff model was used to predict monthly dam inflow. Monthly meteorological data collected from KMA, MOLIT and K-water and dam inflow data collected from K-water were used for the model calibration and verification. To estimate the performance of ABCD model, ESP and BAYES-ESP method, time series analysis and skill score (SS) during 1986~2015 were used. In time series analysis monthly ESP dam inflow prediction values were nearly similar for every years, particularly less accurate in wet and dry years. The proposed BAYES-ESP improved the performance of ESP, especially in wet year. The SS was used for quantitative analysis of monthly mean of observed dam inflows, predicted values from ESP and BAYES-ESP. The results indicated that the SS values of ESP were relatively high in January, February and March but negative values in the other months. It also showed that the BAYES-ESP improved ESP when the values from ESP and observation have a relatively apparent linear relationship. We concluded that the existing ESP method has a limitation to predict dam inflow in Korea due to the seasonality of precipitation pattern and the proposed BAYES-ESP is meaningful for improving dam inflow prediction accuracy of ESP.

Bayesian inference for an ordered multiple linear regression with skew normal errors

  • Jeong, Jeongmun;Chung, Younshik
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.2
    • /
    • pp.189-199
    • /
    • 2020
  • This paper studies a Bayesian ordered multiple linear regression model with skew normal error. It is reasonable that the kind of inherent information available in an applied regression requires some constraints on the coefficients to be estimated. In addition, the assumption of normality of the errors is sometimes not appropriate in the real data. Therefore, to explain such situations more flexibly, we use the skew-normal distribution given by Sahu et al. (The Canadian Journal of Statistics, 31, 129-150, 2003) for error-terms including normal distribution. For Bayesian methodology, the Markov chain Monte Carlo method is employed to resolve complicated integration problems. Also, under the improper priors, the propriety of the associated posterior density is shown. Our Bayesian proposed model is applied to NZAPB's apple data. For model comparison between the skew normal error model and the normal error model, we use the Bayes factor and deviance information criterion given by Spiegelhalter et al. (Journal of the Royal Statistical Society Series B (Statistical Methodology), 64, 583-639, 2002). We also consider the problem of detecting an influential point concerning skewness using Bayes factors. Finally, concluding remarks are discussed.