• Title/Summary/Keyword: linear quadratic gaussian

Search Result 113, Processing Time 0.026 seconds

Optimal Control for Proximity Operations and Docking

  • Lee, Dae-Ro;Pernicka, Henry
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.3
    • /
    • pp.206-220
    • /
    • 2010
  • This paper proposes optimal control techniques for determining translational and rotational maneuvers that facilitate proximity operations and docking. Two candidate controllers that provide translational motion are compared. A state-dependent Riccati equation controller is formulated from nonlinear relative motion dynamics, and a linear quadratic tracking controller is formulated from linearized relative motion. A linear quadratic Gaussian controller using star trackers to provide quaternion measurements is designed for precision attitude maneuvering. The attitude maneuvers are evaluated for different final axis alignment geometries that depend on the approach distance. A six degrees-of-freedom simulation demonstrates that the controllers successfully perform proximity operations that meet the conditions for docking.

LQG Hybrid Vibration Control of a Structure Using TMD (Tuned Mass Damper(TMD)를 이용한 구조물의 Linear Quadratic Gaussian(LQG) 하이브리드 진동제어)

  • Lee, Jin-Ho;Lee, Sang-Beom
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.108-118
    • /
    • 2006
  • The purpose of this study is to investigate the effectiveness of a LQG Hybrid controller to suppress the earthquake disturbance for the building structure. The ground acceleration of N-S component of El-Centro earthquake was scaled to confirm that the building behaved within the elastic range. The tuned mass damper(TMD) on the top floor regulated by LQG algorithm was designed to control the floor displacements. The displacement responses of the hybrid control were compared with those obtained from an active control along with a passive control. The results showed that the LQG hybrid control used approximately 50% less input forces than an active control to satisfy the performance criteria.

New method for LQG control of singularly perturbed discrete stochastic systems

  • Lim, Myo-Taeg;Kwon, Sung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.432-435
    • /
    • 1995
  • In this paper a new approach to obtain the solution of the linear-quadratic Gaussian control problem for singularly perturbed discrete-time stochastic systems is proposed. The alogorithm proposed is based on exploring the previous results that the exact solution of the global discrete algebraic Riccati equations is found in terms of the reduced-order pure-slow and pure-fast nonsymmetric continuous-time algebraic Riccati equations and, in addition, the optimal global Kalman filter is decomposed into pure-slow and pure-fast local optimal filters both driven by the system measurements and the system optimal control input. It is shown that the optimal linear-quadratic Gaussian control problem for singularly perturbed linear discrete systems takes the complete decomposition and parallelism between pure-slow and pure-fast filters and controllers.

  • PDF

Beam-rotating machinery system active vibration control using a fuzzy input estimation method and LQG control technique combination

  • Lee, Ming-Hui
    • Smart Structures and Systems
    • /
    • v.10 no.1
    • /
    • pp.15-31
    • /
    • 2012
  • This study proposes an active control method to suppress beam-rotating machinery system vibrations. The present control method is a combination of the fuzzy input estimation method (FIEM) and linear quadratic Gaussian problem (LQG) algorithms. The FIEM can estimate the unknown input and optimal states by measuring the dynamic displacement, the optimal estimated states into the feedback control; thereby obtaining the optimal control force for a random linear system. Active vibration control of a beam-rotating machinery system is performed to verify the feasibility and effectiveness of the proposed algorithm. The simulation results demonstrate that the proposed method can suppress vibrations in a beam-machine system more efficiently than the conventional LQG method.

Linear-Quadratic-Gaussian Regulators with Moving Horizons (가변경계조건을 갖는 새로운 칼만필터 및 레규레이터 구성)

  • Kwon, W.H.;Park, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 1979.08a
    • /
    • pp.80-82
    • /
    • 1979
  • While the standard linear-quadratic-Gaussian problem has fixed horizons, this paper considers the LQG problem with moving horizons. By the separation principle the solution will be given by the kalman filter with the approaching horizon and the LQ regulator with the receding horizon. Sufficient conditions on weighting matrices are derived under which the filter and regulator are asymptotically stable. It wall be shown that the computation method of the moving-horizon LQG regulators is better than that of the standard LQG regulator. The performance measure between the two optimal controls will be compared. A simulation result is given in order to show the usefulness of the moving-horizon LQG regulator.s

  • PDF

A NONRANDOM VARIATIONAL APPROACH TO STOCHASTIC LINEAR QUADRATIC GAUSSIAN OPTIMIZATION INVOLVING FRACTIONAL NOISES (FLQG)

  • JUMARIE GUY
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.19-32
    • /
    • 2005
  • It is shown that the problem of minimizing (maximizing) a quadratic cost functional (quadratic gain functional) given the dynamics dx = (fx + gu)dt + hdb(t, a) where b(t, a) is a fractional Brownian motion of order a, 0 < 2a < 1, can be solved completely (and meaningfully!) by using the dynamical equations of the moments of x(t). The key is to use fractional Taylor's series to obtain a relation between differential and differential of fractional order.

Stochastic along-wind response of nonlinear structures to quadratic wind pressure

  • Floris, Claudio;de Iseppi, Luca
    • Wind and Structures
    • /
    • v.5 no.5
    • /
    • pp.423-440
    • /
    • 2002
  • The effects of the nonlinear (quadratic) term in wind pressure have been analyzed in many papers with reference to linear structural models. The present paper addresses the problem of the response of nonlinear structures to stochastic nonlinear wind pressure. Adopting a single-degree-of-freedom structural model with polynomial nonlinearity, the solution is obtained by means of the moment equation approach in the context of It$\hat{o}$'s stochastic differential calculus. To do so, wind turbulence is idealized as the output of a linear filter excited by a Gaussian white noise. Response statistical moments are computed for both the equivalent linear system and the actual nonlinear one. In the second case, since the moment equations form an infinite hierarchy, a suitable iterative procedure is used to close it. The numerical analyses regard a Duffing oscillator, and the results compare well with Monte Carlo simulation.

Fuzzy Polynomial Neural Networks based on GMDH algorithm and Polynomial Fuzzy Inference (GMDH 알고리즘과 다항식 퍼지추론에 기초한 퍼지 다항식 뉴럴 네트워크)

  • 박호성;윤기찬;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.130-133
    • /
    • 2000
  • In this paper, a new design methodology named FNNN(Fuzzy Polynomial Neural Network) algorithm is proposed to identify the structure and parameters of fuzzy model using PNN(Polynomial Neural Network) structure and a fuzzy inference method. The PNN is the extended structure of the GMDH(Group Method of Data Handling), and uses several types of polynomials such as linear, quadratic and modified quadratic besides the biquadratic polynomial used in the GMDH. The premise of fuzzy inference rules defines by triangular and gaussian type membership function. The fuzzy inference method uses simplified and regression polynomial inference method which is based on the consequence of fuzzy rule expressed with a polynomial such as linear, quadratic and modified quadratic equation are used. Each node of the FPNN is defined as fuzzy rules and its structure is a kind of neuro-fuzzy architecture Several numerical example are used to evaluate the performance of out proposed model. Also we used the training data and testing data set to obtain a balance between the approximation and generalization of proposed model.

  • PDF

Actrve Suspension Control using aFrequency-Shaped Performance Index (주파수 형태의 성능지수를 고려한 능동형 현가장치 제어)

  • 김희수;기창두;황원걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.299-304
    • /
    • 1993
  • A 1/4 car model(2 DOF system) is employed to evaluate the performance included a quadratic cost functional in frequency domain. The design procedure of feedback control to optimize the performance index results in a modified Linear-Quadratic-Gaussian problem and cultivates a quite simple control algorithm. Computer simulation result is shown that the LQG method using frequency shaped performance index is outstanding in ride comfort and its response converges to the steady state very rapidly in comparison with the known passive suspension, classical design methods LQR/ and LQG.

  • PDF