• Title/Summary/Keyword: linearization errors

Search Result 59, Processing Time 0.023 seconds

An Extended Kalman Filter Robust to Linearization Error (선형화 오차에 강인한 확장칼만필터)

  • Hong, Hyun-Su;Lee, Jang-Gyu;Park, Chan-Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.2
    • /
    • pp.93-100
    • /
    • 2006
  • In this paper, a new-type Extended Kalman Filter (EKF) is proposed as a robust nonlinear filter for a stochastic nonlinear system. The original EKF is widely used for various nonlinear system applications. But it is fragile to its estimation errors because they give rise to linearization errors that affect the system mode1 as the modeling errors. The linearization errors are nonlinear functions of the estimation errors therefore it is very difficult to obtain the accurate error covariance of the EKF using the linear form. The inaccurately estimated error covariance hinders the EKF from being a sub-optimal estimator. The proposed filter tries to obtain the upper bound of the error covariance tolerating the uncertainty of the error covariance instead of trying to obtain the accurate one. It treats the linearization errors as uncertain modeling errors that can be handled by the robust linear filtering. In order to be more robust to the estimation errors than the original EKF, the proposed filter minimizes the upper bound like the robust linear filter that is applied to the linear model with uncertainty. The in-flight alignment problem of the inertial navigation system with GPS position measurements is a good example that the proposed robust filter is applicable to. The simulation results show the efficiency of the proposed filter in the robustness to initial estimation errors of the filter.

A Robust Fault Detection method for Uncertain Systems with Modelling Errors (모델링 오차를 갖는 불확정 시스템에서의 견실한 이상 검출기)

  • 권오주;이명의
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.7
    • /
    • pp.729-739
    • /
    • 1990
  • This paper deals with the fault detection problem in uncertain linear/non-linear systems having both undermodelling and noise. A robust fault detection method is presented which accounts for the effects of noise, model mismatch and nonlinearities. The basic idea is to embed the unmodelled dynamics in a stochastic process and to use the nominal model with a predetermined fixed denominator. This allows the input /output relationship to be represented as a linear function of the system parameters and also facilitate the quatification of the effect of noise, model mismatch and linearization errors on parameter estimation by the Bayesian method. Comparisons are made via simulations with traditional fault detection methods which do not account for model mismatch or linearization errors. The new method suggested in this paper is shown to have a marked improvement over traditional methods on a number of simulations, which is a consequence of the fact that the new method explicitly for the effects of undermodelling and linearization errors.

Integrated equations of motion for direct integration methods

  • Chang, Shuenn-Yih
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.569-589
    • /
    • 2002
  • In performing the dynamic analysis, the step size used in a step-by-step integration method might be much smaller than that required by the accuracy consideration in order to capture the rapid chances of dynamic loading or to eliminate the linearization errors. It was first found by Chen and Robinson that these difficulties might be overcome by integrating the equations of motion with respect to time once. A further study of this technique is conducted herein. This include the theoretical evaluation and comparison of the capability to capture the rapid changes of dynamic loading if using the constant average acceleration method and its integral form and the exploration of the superiority of the time integration to reduce the linearization error. In addition, its advantage in the solution of the impact problems or the wave propagation problems is also numerically demonstrated. It seems that this time integration technique can be applicable to all the currently available direct integration methods.

Accuracy Improvement of Digital Measurement System by Modified Piecewise Measuring Functions (개선 구산 계측함수에 의한 디지털 계측시스템의 정밀도 향상)

  • Hong, Sung-Hun;Kang, Moon-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.2
    • /
    • pp.138-145
    • /
    • 2001
  • Measurement errors in a digital measurement systems are mainly due to the consisting elements accuracies and the circuit parameters changes following the environment variations such as temperature. Further, systems non-linearity makes the measurement accuracy worse, and accordingly a linearization method should be considered to avoid this worsening. In this study, a temperature error-correction method and linearization methods are proposed and a digital temperature measurement system utilizing these methods is realized. And the proposed measurement methods are observed to increase the measurement accuracy of the digital measurement system.

  • PDF

Implementation of DSP Controller for Levitation of EMS System using Nonlinear Feedback Linearization (비선형 궤환 선형화 기법을 사용한 자기부상 시스템의 DSP 제어기 구현)

  • Shim, Hyung-Bo;Joo, Sung-Jun;Seo, Jin-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.268-270
    • /
    • 1993
  • The implementation of Nonlinear Feedback Linearization control for Electro-Magnetic Suspension system is presented. The controller using TMS320C31 DSP chip was proposed and the experiments were performed Control law for EMS system using feedback linearization is derived and implemented in the DSP. Some tests were constructed far experimental comparison between feedback linearization and classical state feedback The experimental results demonstrate that the feedback linearization controller shows bettor performance than that of the classical state feedback controller and it is robust with respect to disturbance and parameter variation, though some steady-state errors appear.

  • PDF

Bidirectional Platoon Control Using Backstepping-Like Feedback Linearization (역보행 제어 형태의 궤환 선형화를 이용한 양방향 플래툰 제어)

  • Kwon, Ji-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.410-415
    • /
    • 2013
  • This paper proposes a bidirectional platoon control law using a coupled distance error based on the backstepping-like feedback linearization control method for an interconnected mobile agent system with a string structure. Unlike the previous results where the single agent was controlled using the only own information without other agents, the proposed control law cannot show the only distance error convergence of each agent, but also the string stability of the whole system. Also, the control performances are improved by the proposed control law in spite of low performance of bidirectional control strategy in the previous results. The proposed bidirectional platoon control algorithm is based on the backstepping-like feedback linearization control method. The position errors between each agent and the preceding and the behind agents are coupled by weighted summation. By the proposed control law, the distance error of each agent can converge to zero while the string stability is guaranteed when the coupled errors can converge to zero. To this end, the back-stepping control method is employed. The pseudo velocity input is determined considering the kinematic relationship between agents and the string stability. Then, the actual dynamic control input is determined to make the actual velocity converge to the pseudo velocity input. The stability analysis and the simulation results of the proposed method are included in order to demonstrate the practical application of the proposed algorithm.

A new Observation Model to Improve the Consistency of EKF-SLAM Algorithm in Large-scale Environments (광범위 환경에서 EKF-SLAM의 일관성 향상을 위한 새로운 관찰모델)

  • Nam, Chang-Joo;Kang, Jae-Hyeon;Doh, Nak-Ju Lett
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.1
    • /
    • pp.29-34
    • /
    • 2012
  • This paper suggests a new observation model for Extended Kalman Filter based Simultaneous Localization and Mapping (EKF-SLAM). Since the EKF framework linearizes non-linear functions around the current estimate, the conventional line model has large linearization errors when a mobile robot locates faraway from its initial position. On the other hand, the model that we propose yields less linearization error with respect to the landmark position and thus suitable in a large-scale environment. To achieve it, we build up a three-dimensional space by adding a virtual axis to the robot's two-dimensional coordinate system and extract a plane by using a detected line on the two-dimensional space and the virtual axis. Since Jacobian matrix with respect to the landmark position has small value, we can estimate the position of landmarks better than the conventional line model. The simulation results verify that the new model yields less linearization errors than the conventional line model.

Implementation of Temperature Measurement System Using Fuzzy Theory (Fuzzy 이론을 이용한 디지털 온도계측 시스템의 구현)

  • Kang, Moon-Sung;Hong, Sung-Hun
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.510-512
    • /
    • 1997
  • Measurement errors in a temperature measurement system are mainly due to the consisting elements' accuracies and the circuit parameters' changes following the environment variations such as temperature. Further, system's non-linearity makes the measurement accuracy worse, and accordingly a linearization method should be considered to avoid this worsening. In this study, an error-correction method and a linearization method are proposed and a system utilizing these methods is realized.

  • PDF

Adaptive Control with Antiwindup Scheme for Relaxed Static Stability(RSS) Missiles with Saturating Actuator

  • Kim, Young-Hwan;Chwa, Dong-Kyung;Im, Ki-Hong;Choi, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.54.4-54
    • /
    • 2001
  • This paper proposes an adaptive control scheme for an autopilot design of Relaxed-Static-Stability(RSS) Missiles with saturating actuator. The feedback linearization controller eliminates nonlinear terms in RSS missile dynamics and makes the entire system linear. But modeling errors, disturbances and the nonlinear mismatch due to input constraints exert a bad influence on the performance of the feedback linearization controller Thus, first, we derive a parametric affine uncertainty model with modeling errors and disturbances. Then an adaptive control law with anti-windup scheme is developed, where the bounds of uncertainties are estimated with adaptive laws. The proposed adaptive controller can remove the bad effects of uncertainties, of disturbances, and of saturating actuator ...

  • PDF

Comparison of PID and Feedback Linearization Control for Magnetic Levitation System (자기부상 시스템의 PID 제어와 Feedback Linearization 제어와의 성능비교)

  • 박종석;김동환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.263-263
    • /
    • 2000
  • Electromagnetic Suspension(EMS) System produces no noise, friction and heat through non-contacting operation Therefore, the applicable device using EMS system has a lot of attraction in case of the high-speed and non-contacting transmission EMS with nonlinear properties requires a precise airgap position control and stable kinematics characteristics under the disturbances, In this study, the nonlinear system was linearized by a Nonlinear Feedback Lineariztion(NFL) method. The NFL method requires that the modelling should be exact, and the state variables should be measured and a rapidly operating controller be necessary on account of a heavy data calculating In the experiments. the ideal control characteristics of the NFL was acquired through simulation at first. then the characteristics of the actual system were compared with those of simulation. In addition, the results by NFL were examined and analysed considering the characteristics of the PID control. The Control by NFL shows much stable control characteristics than the PID control. Whereas, the steady state errors occur for various disturbances. hence a robust control design is remained for a further study.

  • PDF