• 제목/요약/키워드: lipid hydrolysis

검색결과 95건 처리시간 0.023초

Characterization of Fatty Acids Extracted from Brachionus rotundiformis Using Lipase-catalyzed Hydrolysis

  • Lee, Jung-Kwon;Kim, Se-Kwon;Byun, Hee-Guk
    • Fisheries and Aquatic Sciences
    • /
    • 제12권1호
    • /
    • pp.16-23
    • /
    • 2009
  • Lipids were extracted from marine rotifer, Brachionus rotundiformis in order to examine the functionality of lipid enzymatic modification. The fatty acids, palmitic, linoleic, oleic and stearic acids were the dominant forms accounting for approximately 35.8%, 21.5%, 15.9% and 7.7% of the total lipid content, respectively. Lipid fractions were categorized as neutral lipids (38.5%), glycolipids (45.9%) and phospholipids (17.6%), and after extraction from the rotifer were isolated by thin-layer chromatography (TLC) as free fatty acids (FFA), monoacylglycerol (MAG), diacylglycerol (DAG) and triacylglycerol (TAG). The production of polyunsaturated fatty acid (PUFA) concentrate from rotifer lipids was studied using lipase-catalyzed hydrolysis. In addition, rotifer lipids were modified by hydrolysis using lipases such as porcine pancreas, Candida rugosa and Rhizomucor miehei. The lipase from Rhizomucor miehei was effective in extracting linoleic acid (C 18:2), while the lipase from Candida rugosa was effective in palmitic acid (C16:0) extraction.

당뇨쥐의 간 Microsome에서 Phopholipase A_{2} 활성과 지질과산화 (Phospholipase $A_{2}$ Activity and Lipid Peroxidation in Liver Microsome of Streptozotocin Induced Diabetic Rats)

  • 이순재;최정화
    • 한국식품영양과학회지
    • /
    • 제26권5호
    • /
    • pp.908-913
    • /
    • 1997
  • The purpose of this study was to investigate phospholipase $A_{2}$ activity and lipid peroxidation I streptozotocin induced diabetic rats. Sprague-Dawley male rats weighting-Dawley male rats weighting 300$\pm$10gm were randomly assigned to normal and STZ-induced diabetic group. Diabetes was induced by intravenous injection of 55mg/kg of STZ in sodium citrate buffer(pH 4.3). Animals were sacrificed at the 6th day of diabetic states. Body weight gains were lower in DM group. Phosphatidylcholine hydrolysis in liver was not significantly different between two groups, whereas phosphatidylethanolamine hydrolysis in liver was increased by 69% in DM group comparing with that of normal group. Liver microsomal phospholipase $A_{2}$ activity and level of TBARS was increased by 91%, 109% in DM group compared with that of normal group, respectively. The present results indicate that phospholipase $A_{2}$ activity is specific to PE hydrolysis, leading to lipid peroxidation process in STZ induced diabetic rats.

  • PDF

The Regulation of Lipolysis in Adipose Tissue

  • Serr, Julie;Li, Xiang;Lee, Kichoon
    • Journal of Animal Science and Technology
    • /
    • 제55권4호
    • /
    • pp.303-314
    • /
    • 2013
  • Knowledge regarding lipid catabolism has been of great interest in the field of animal sciences. In the livestock industry, excess fat accretion in meat is costly to the producer and undesirable to the consumer. However, intramuscular fat (marbling) is desirable to enhance carcass and product quality. The manipulation of lipid content to meet the goals of animal production requires an understanding of the detailed mechanisms of lipid catabolism to help meticulously design nutritional, pharmacological, and physiological approaches to regulate fat accretion. The concept of a basic system of lipases and their co-regulators has been identified. The major lipases cleave triacylglycerol (TAG) stored in lipid droplets in a sequential manner. In adipose tissue, adipose triglyceride lipase (ATGL) performs the first and rate-limiting step of TAG breakdown through hydrolysis at the sn-1 position of TAG to release a non-esterified fatty acid (NEFA) and diacylglycerol (DAG). Subsequently, cleavage of DAG occurs via the rate-limiting enzyme hormone-sensitive lipase (HSL) for DAG catabolism, which is followed by monoglyceride lipase (MGL) for monoacylglycerol (MAG) hydrolysis. Recent identification of the co-activator (Comparative Gene Identification-58) and inhibitor [G(0)/G(1) Switch Gene 2] of ATGL have helped elucidate this important initial step of TAG breakdown, while also generating more questions. Additionally, the roles of these lipolysis-related enzymes in muscle, liver and skin tissue have also been found to be of great importance for the investigation of systemic lipolytic regulation.

Hydrolysis of Olive Oil by Lipase, Immobilized on Hydrophobic Support

  • Jung, Ju-Young;Yun, Hyun-Shik;Kim, Eun-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • 제7권2호
    • /
    • pp.151-156
    • /
    • 1997
  • Two commercially available lipases, Lipase OF (non-specific lipase from Candida rugosa) and Lipolase 100T (1, 3-specific lipase from Aspergillus niger), were immobilized on insoluble hydrophobic support HDPE (high density polyethylene) by the physical adsorption method. Hydrolysis performance was enhanced by mixing a non-specific Lipase OF and a 1, 3-specific Lipolase 100T at a 2 : 1 ratio. The results also showed that the immobilized lipase maintained its activity at broader temperature ($25~55^{\circ}C$) and pH (4-8) ranges than soluble lipases. In the presence of organic solvent (isooctane), the immobilized lipase retained most of its activity in upto 12 runs of hydrolysis experiment. However, without organic solvent in the reaction mixture, the immobilized lipase maintained most of its activity even after 20 runs of hydrolysis experiment.

  • PDF

Effects of Gelatin Hydrolysates Addition on Technological Properties and Lipid Oxidation of Cooked Sausage

  • Ham, Youn-Kyung;Song, Dong-Heon;Noh, Sin-Woo;Gu, Tae-Wan;Lee, Jae-Hyeok;Kim, Tae-Kyung;Choi, Yun-Sang;Kim, Hyun-Wook
    • 한국축산식품학회지
    • /
    • 제40권6호
    • /
    • pp.1033-1043
    • /
    • 2020
  • This study investigated the impacts of gelatin hydrolysate addition on the technological properties and lipid oxidation stability of cooked sausage. Gelatin hydrolysate was prepared from pork and duck skin gelatin, through stepwise hydrolysis using collagenase and pepsin. The cooked sausages were formulated without gelatin (control) or with 1% pork skin gelatin, 1% duck skin gelatin, 1% pork skin gelatin hydrolysate, and 1% duck skin gelatin hydrolysate. The pH, color characteristics, protein solubility, cooking loss, and textural properties of cooked sausages were evaluated, and the 2-thiobarbituric acid reactive substances (TBARS) value was measured weekly to determine lipid oxidation stability during 4 wk of refrigerated storage. Enzymatic hydrolysis of gelatin decreased protein content and CIE L* but increased redness and yellowness (p<0.05). When 1% gelatin or gelatin hydrolysate was incorporated in cooked sausage, however, little to no impacts on pH value, moisture content, protein content, color characteristics, protein solubility, and cooking loss were found (p>0.05). The addition of 1% duck skin gelatin hydrolysate increased the cohesiveness and chewiness of cooked sausages. The inclusion of 1% duck skin gelatin accelerated lipid oxidation of cooked sausages during refrigerated storage (p<0.05), whereas duck skin gelatin hydrolysate caused a lower TBARS value in cooked sausage compared to duck skin gelatin. The results show comparable effects of gelatin and gelatin hydrolysate addition on the technological properties of cooked sausages; however, the oxidative stability of raw materials for gelatin extraction should be evaluated clearly in further studies.

Characterization of Lipid Binding Region of Lipoprotein Lipase

  • Lee, Jae-Bok;Kim, Tae-Woong
    • Preventive Nutrition and Food Science
    • /
    • 제4권2호
    • /
    • pp.139-144
    • /
    • 1999
  • Lipoprotein lipase (LPL) I san enzyme that catalyzed the hydrolysis of triacylglycerols of chylomicrons and VLDL to produce 20acylglycerols and fatty acids. The enzyme, LPL, is localized on the surface of the capillary endothelium and is widely distributed in extrahepatic tissues including heart, skeletal muscle and adipose tissue. LPL has been isolated from boving milk by affinity chromatography on heparin-separose in 2 M NaCL, 5mM barbital buffer, pH 7.4. To elucidate the lipid-binding regin, LPL was digested with trypsin and then separated by gel filtration. Lipid binding region of LPL has been investigated by recombining LPL peptides with DMPC vesicles. Proteolytic LPL fragments with DMPC were reassembled and stabilized by cholate. Lipid-binding region of LPL was identified by a PTH-automated protein sequencer, as AQQHYPVSAGYTK. The analysis of the secondary structure of the lipid-binding peptides revealed a higher probability of $\alpha$-helix structure compared to the whole LPL protein. The prediction of hydrophobicity of lipid -binding region was highly hydrophobic (-1.1) compared to LPL polypetide(-0.4).

  • PDF

Amylose와 Cyclodextrin 및 Lipid의 Complex 형성 특성 (Characteristics of Amylose-Lipid and Cyclodextrin-Lipid Complexes)

  • 노회진;박천석;권미라;문태화;박관화
    • 한국식품과학회지
    • /
    • 제26권2호
    • /
    • pp.117-122
    • /
    • 1994
  • 여러가지 전분에서 AL-complex의 형성에 lysolecithin의 첨가가 미치는 영향과 cyclodextrin의 첨가에 의한 CL-complex 형성효과를 AL-complex 형성과의 관계로 DSC를 이용하여 비교하였다. 옥수수, 밀, 쌀 전분은 모두 $100^{\circ}C$ 전후의 높은 온도에서 endothermic peak을 나타냈으며 2차 가열에서도 그대로 존재하여 AL-complex의 용융은 가역반응이고 3가지 전분에 상당량의 AL-complex가 존재함을 보여주었다. Lysolecithin의 첨가에 의해 AL-complex의 용융엔탈피는 증가하고 용융온도도 증가하는 경향을 보여 lysolecithin에 의한 AL-complex 형성효과가 뚜렷하였다. 형성된 AL-complex에 ${\beta}-CD$을 첨가하면 AL-complex의 peak가 감소하는 반면 $70^{\circ}C$ 근처에서 새로운 peak가 나타났으며 ${\beta}-CD$의 농도를 증가하였을 때 AL-complex의 peak가 비례하여 감소하였다. 이는 $lysolecithin-{\beta}-CD$ complex가 형성되어 lysolecithin이 ${\beta}-CD$으로 전이되었으며 동시에 amylose가 complex로부터 유리되었음을 시사하고 있다. 이를 증명하기 위하여 ${\beta}-CD$의 존재하에 AL-complex를 가열한 후 amylase를 착용시킨 결과 가수분해속도가 현저히 증가하여 AL-complex로부터 amylose가 유리됨을 알 수 있었다.

  • PDF

여러 수분활성도에서 저장된 밀가루의 지질 조성 및 산화 (Lipid Composition and Oxidation of Wheat Flour Stored at Various Water Activities)

  • 이유성;최은옥
    • 한국식품조리과학회지
    • /
    • 제23권2호통권98호
    • /
    • pp.180-186
    • /
    • 2007
  • In this study, we examined the effects of different water activities (Aw: 0.3, 0.5, and 0.8) on the lipid composition and oxidation of wheat flour after 28 days of storage in the dark at $60^{\circ}$C. The lipid content of the flour was 2.7%, and had decreased significantly (p<0.05) at the end of the storage period. Decrease in monoacylglycerol and increase in free fatty acids were observed, however, phosphatidic acid, phosphatidylglycerol, and phosphatidylinositiol were not detected after storage. Phosphatidylehtanolamine was more stable than phosphatidylcholine during the dark storage of flour. The flour lipids consisted of palmitic (18%), stearic (1%), oleic (14%), linoleic (63%), and linolenic (4%) acids, and the relative content of linolenic acid decreased after 28 days of storage. The conjugated dienoic acid content of the flour lipid had increased due to lipid oxidation during dark storage. Hydrolysis of neutral lipids and glycolipids, and lipid oxidation, were higher in the flour stored at Aw 0.8 than in the flour stored at Aw 0.3 or 0.5.

열수전처리를 이용한 탈지미세조류로부터 발효당 생산 공정 개발 (Production of Fermentable Sugar from Lipid Extracted Algae using Hot Water Pretreatment)

  • 이지현;신슬기;최강훈;조재민;김진우
    • Korean Chemical Engineering Research
    • /
    • 제54권4호
    • /
    • pp.443-447
    • /
    • 2016
  • 미세조류 세포벽은 셀룰로오스가 주요 구성성분으로 리그닌을 포함하지 않아 낮은 온도의 전처리 조건에서도 효과적으로 셀룰로오스와 헤미셀룰로오스 분해가 가능하다. 차세대 바이오매스로 주목 받는 미세조류(Tetraselmis KCTC 12236BP)로부터 $120^{\circ}C$ 이하의 낮은 온도 조건에서 열수전처리를 이용한 발효당 생산 증대를 위해 공정조건을 최적화하였다. 주요 공정조건인 추출온도, 황산농도와 추출시간에 따른 당화율 변화를 확인하였을 때, 온도와 황산농도가 글루코오스 생산에 큰 영향을 컸으며 당화율이 비례하여 증가하는 경향을 보였다. 경제성을 고려한 열수전처리 최적조건은 $120^{\circ}C$, 2 mol 황산, 40분으로 95.9%의 당화율을 얻을 수 있었다. 탈지미세조류의 황산 열수전처리와 효소당화를 비교했을 때, 황산 열수전처리의 당화율이 2.1배 이상 높고 전처리 시간이 짧아 황산 열수전처리가 효소당화에 비해 효과적인 공정임을 확인하였다.

Optimization of ultrasonic-assisted enzymatic hydrolysis conditions for the production of antioxidant hydrolysates from porcine liver by using response surface methodology

  • Yu, Hui-Chuan;Tan, Fa-Jui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권11호
    • /
    • pp.1612-1619
    • /
    • 2017
  • Objective: The objective of this study was to optimize ultrasonic-assisted enzymatic hydrolysis conditions, including enzyme-to-substrate (E/S) ratio, pH, and temperature, for producing porcine liver hydrolysates (PLHs) with the highest 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity by using response surface methodology (RSM). Methods: The study used RSM to determine the combination of hydrolysis parameters that maximized the antioxidant activity of our PLHs. Temperature ($40^{\circ}C$, $54^{\circ}C$, and $68^{\circ}C$), pH (8.5, 9.5, and 10.5), and E/S ratio (0.1%, 2.1%, and 4.1%) were selected as the independent variables and analyzed according to the preliminary experiment results, whereas DPPH free radical scavenging activity was selected as the dependent variable. Results: Analysis of variance showed that E/S ratio, pH, and temperature significantly affected the hydrolysis process (p<0.01). The optimal conditions for producing PLHs with the highest scavenging activity were as follows: E/S ratio, 1.4% (v/w); temperature, $55.5^{\circ}C$; and initial pH, 10.15. Under these conditions, the degree of hydrolysis, DPPH free radical scavenging activity, ferrous ion chelating ability, and reducing power of PLHs were 24.12%, 79%, 98.18%, and 0.601 absorbance unit, respectively. The molecular weight of most PLHs produced under these optimal conditions was less than 5,400 Da and contained 45.7% hydrophobic amino acids. Conclusion: Ultrasonic-assisted enzymatic hydrolysis can be applied to obtain favorable antioxidant hydrolysates from porcine liver with potential applications in food products for preventing lipid oxidation.