• Title/Summary/Keyword: lipid peroxidation

Search Result 2,030, Processing Time 0.025 seconds

Antioxidant Activity of Vegetables and Their Blends in Iron -Catalyzed Model Systems

  • Lee, Beom-jun;Lee, Yong-Soon;Cho, Myung-Haing
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.4
    • /
    • pp.309-314
    • /
    • 1998
  • Vegetables are known to contain high amounts of natural antioxidants such as ascorbate, $\alpha$-tocopherol, $\beta$-carotene, and flavinoids. The antioxidant activities of several vegetables including broccoli, carrot , green pepper, spinach and tomato, and their blends were investigated using various iron-catalyzed lipid peroxidation systems. In linoleic acid micelles, carrot and spinach significantly inhibited lipid peroxidation by 29.0% and 35.8% , respectively (p<0.05).Blends of two, three , or four vegetables indluding spinach increased the inhibitory effect on lipid peroxidation, mainly due to high level of antioxidants in spinach. In beef homogenates, tomato significantly inhibited lipid peroxidation by 19.9%(p<0.05), whereas spinach and broccoli significantly stimulated lipid peroxidation by 67.3% and 11.5%, respectively (p<0.05). In the presence of 100$\mu$M ferrous ions, all vegetables inhibited degradation of deoxy-ribose by 43.6~77.6%(p<0.05). In the presence of 100$\mu$M ferric ions , broccoli and spinach stimulated deoxyribose degradation by 39.8% and 55.8%, respectively. These results indicate that the antioxidant activity of vegetables varied with the different model systems and depended on the provided environment such as iron content and substrates. The activity of the various combinations (blends) of vegetables was strongly related to that of the individual vegetable.

  • PDF

Effects of Green Tea Catechins on the Lipid Peroxidation and Superoxide Dismutase (녹차카테킨이 지질과산화 및 Superoxide Dismutase에 미치는 영향)

  • 강원식;이윤희;정현희;강민경;김택중;홍진태;윤여표
    • Journal of Food Hygiene and Safety
    • /
    • v.16 no.1
    • /
    • pp.41-47
    • /
    • 2001
  • The purpose of this study was to elucidate the effects of green tea catechins (GTC) on the lipid peroxidation and superoxide dismutase (SOD). GTC showed the high SOD activity, while sitgnificantly inhibited the peroxide value of linoleic acid (93%) and lipid peroxidation (84%) from rat liver microsomal fraction induced by Fe$^{2+}$ascorbate system. The effects of GTC on the SOD and catalase activities, and lipid peroxidation after oral administration were investigated. GTC (50 mg/kg) significantly increased SOD (62%) and catalase activities (75%), while significantly inhibited the lipid peroxidation (52%) of rat liver microsome in a dose-dependent manner. These results suggest that GTC has the antioxidative effect which is rotated to the prevention of aging and cancer.r.

  • PDF

Correlation between microsomal lipid peroxidation levels and drug metabolizing enzymes in rats on various ages (연령증가에 따른 마이크로솜 막지질 과산화수준의 변화와 해독효소계의 관계)

  • Cho, Jong-Hoo;Hwang, DaeWoo;Park, Sang-Youel
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.4
    • /
    • pp.579-585
    • /
    • 2003
  • The studies were carried out on the correlation between microsomal lipid peroxidation level and drug metabolizing enzyme activities in rat liver microsomal suspensions on various ages (2-week-old, 2, 4, 8, and 12-month-old). The lipid peroxidation levels of liver homogenates tended to be elevated in a 4-month-old rat livers, but it was a little decreased in 8 and 12-month-old rat livers. The lipid peroxidation levels of microsomal suspension was not shown any significant differences by ages. Lipid peroxidation levels and microsomal cytochrome P450 and NADPH-cytochrome c reductase activity showed a direct correlation (r=0.72 and r=0.64), respectively. The activities of cytochrome P450-dependent aminopyrine-N-demethylase and benzpyrene hydroxylase in rat liver microsomes were increased by ages up to 8-month-old rats and maintained in 12-month-old rats. The correlation between lipid peroxidation levels and these cytochrome-dependent enzyme activities showed a high direct correlation (r=0.97 and r=0.81), respectively.

Effects of Juglandis Semen extraction on oxidant-induced cell injury in lung tissues (폐(肺) 조직(組織)에서 산화성(酸化性) 세포(細胞) 손상(損傷)에 대(對)한 호도(胡桃) 추출액(抽出液)의 효과(效果))

  • Lee, Woo-Heon;Seo, Woon-Gyo;Jeong, Ji-Cheon
    • The Journal of Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.375-384
    • /
    • 1997
  • This study was undertaken to determine Juglandis Semen extraction (JS) has a protective effect against the cell injury caused by oxidants, t-butylhydroperoxide (t-BHP) and $H_{2}O_2$ in rabbit lung slices. Cell injury was estimated by measuring tissue water content and peroxidation of membrane lipids was assessed by measuring malondialdehyde (MDA), an end-product of lipid peroxidation. t-BHP significantly increased water content in lung tissues over concentrations of 2-10 mM, and such effects were prevented by 5% JS. JS exerted the beneficial effect in a dose-dependent manner. $H_{2}O_2$ (100 mM) also increased water content in tissues, which was almost completely prevented by 5% JS. t-BHP induced lipid peroxidation in a dose-dependent fashion in lung tissues over concentrations of 0.5-10 mM. JS significantly reduced t-BHP induced lipid peroxidation and oxidant-independent endogenous lipid peroxidation, and such effects were dose-dependent at concentration of 0.5-10%. JS prevented $H_{2}O_2$ (100 mM)-dependent lipid peroxidation. These results suggest that JS prevents ceil injury induced by oxidants in the lung, and such effects may be attributed to inhibition of lipid peroxidation. The precise mechanisms remains to be explored.

  • PDF

The Secondary Effects of Pencycuron on the Formation of Giant Protoplasts and the Lipid Peroxidation of Rhizoctonia solani AG4

  • Kim, Heung-Tae;Isamu Yamaguchi;Cho, Kwang-Yun
    • The Plant Pathology Journal
    • /
    • v.17 no.1
    • /
    • pp.36-39
    • /
    • 2001
  • The secondary effects of pencycuron on cell membrane of Rhizoctonia solani AG4 were investigated by the observation of giant protoplast formation and lipid peroxidation. Compared to protoplasts of R. solani R-C (sensitive strain) and Rh-131 (non-sensitive strain) increased in their size by 2.0-3.5 times 12 h after incubation in potato-dextrose broth containing novozyme (7 mg/$m\ell$) and $\beta$-glucuronidase ($60\mu\textrm{g}/$\textrm{ml}) with 0.6 M mannitol (pH 5.2). The increase of protoplast size in R-C was slightly inhibited from $13.8\textrm{mg}/\textrm{ml}$ without pencycuron to 10.3 ${\mu}{\textrm}{m}$ with 1.0$\mu\textrm{g}$/$m\ell$ of pencycuron. However, the size of giant protoplast of Rh-131 was not affected by the pencycuron treatment. Both strains R-C and Rh-131 did not exhibit the lipid peroxidation 12 h after the application of 1.0 $\mu\textrm{g}$/$m\ell$ pencycuron. The remarkable peroxidation of membrane lipid was observed only in R-C 24 h after pencycuron application, but not in Rh-131. Althought the inhibition of giant protoplast formation and the membrane lipid peroxidation were observed only in the sensitive strain R-C by pencycuron, it is difficult to conclude that these are the primary mechanism of pencycuron. The mild activity of pencycuron on the inhibition of giant protoplast formation and late membrane lipid peroxidation in the fungicide-sensitive strain did not noincid with the dramatic activity of pencycuron in R. solani. Therefore, our results suggest that inhibition of giant protoplast formation and membrane lipid peroxidation is the secondary effect of pencycuron.

  • PDF

EFFECTS OF NOVEL DITHIOL MALONATE DERIVATIVES ON LIVER LIPID PEROXIDATION AND ON MICROSOMAL ELECTRON TRANSPORT SYSTEM

  • Park, Keun-Hee;Lee, Jong-Wook
    • Toxicological Research
    • /
    • v.3 no.2
    • /
    • pp.97-110
    • /
    • 1987
  • The effects of 5 novel hepatotrophic agents, dithiol malonate derivatives (DMDs; DMD1-DMD5), on the liver microsomal lipid peroxidation induced by carbon tetrachloride $(CCl_4)$ and the correlations with the changes of microsomal electron transport system were investigated. All DMDs were found to inhibit the lipid peroxidation induced by $CCl_4$ in mice and rats as well in vitro liver microsomal system. Therefore, each DMD seemed to have direct mode of action on liver microsomes to inhibit the lipid peroxidation. As an ex vivo study, the induced lipid peroxidation by $CCl_4$ and the changes in electron transport system were determined with liver microsomes obtained from rats chronically treated with DMDs for 7 days. The induced lipid peroxide contents in liver microsomal system were lower in DMD1, DMD2 and DMD3 treated group, but higher in DMD4 and DMD5 group when compared to the control group. Cyt. p.450 contents in the microsomes were decreased by the treatment with DMD1, DMD2 and DMD3, but increased significantly by DMD4 with great extent and by DMD5 with less extent. The cyt. p-450 isozymes induced by treatment of DMD4 and DMD5 were identified as 3-methylcholanthrene (MC) type. The NADPH cyt. -C reductase activities of the microsomes treated with DMD1, DMD2, DMD4 and DMD5 were increased in the range of around 20% to 50%, but decreased with DMD3, All DMDs increased dyt. $-b_5$ content and did not alter NAdH-cyt, $-b_5$ reductase activities in the microsomes. In summary, the 5 novel hepatotrophic agents (DMDs) markedly protected against lipid peroxidation induced by $CCl_4$ in vivo and in vitro possibly through the mechanism of direct action on the liver microsomes. The degree of inhibition produced by DMDs on lipid peroxidation induced by $CCl_4$ seemed to coincide rather with cyt. p-450 contents than with other components of liver microsomal electron transport system including NADPH-cyt, -C reductase.

  • PDF

Fish Oil Enriched Diet-Induced in vivo Lipid Peroxidation and Increased Excretion of Urinary Lipophilic Lipid Metabolites in Rats

  • Kim, Song-Suk
    • Nutritional Sciences
    • /
    • v.3 no.1
    • /
    • pp.18-24
    • /
    • 2000
  • Peroxidative stimuli mediated by high polyunsaturated fatty acid administration in rats induced in vivo lipid peroxidation and resulted in increased urinary excretion of a number of lipophilic aldehydes and related carbonyl compounds. These secondary lipid peroxiation products, measured as 2, 4-dinitrophenylhydrazine deritives, were detected and identified by the newly developed HPLC method. The identified urinary lipophilic nonpolar aldehydes and related carbonyl compounds were butanal, butan-2-one, pentan-2-one, hexanal, hex-2-enal, hepta-2, 4-dienal, hept-2-enal, octanal, and oct-2-enal. Lipophilic polar aldehydes such as 4-hydroxyhex-2-enal and 4-hydroxyoct-2-enal were also identified. A polyunsaturated fatty acid diet containing n-3 fatty acids generally caused high levels of urinary excretion of lipophilic aldehydes and related carbonyl compounds in rats than a normal diet. Significantly increased secondary lipid peroxidation products were hexanal, hepta-2, 4-dienal, octanal, 4-hydroxyhex-2-exal, 4-hydroxyoct-2-enal, and a number of unidentified compunds.

  • PDF

Effect of Water and Ethanol Extracts of Persimmon Leaf and Green Tea Different Conditions on Lipid Metabolism and Antioxidative Capacity in 12-month-old Rats (추출 조건을 달리한 감잎과 녹차의 물 및 에탄올 추출물이 노령쥐의 지방대사와 항산화능에 미치는 영향)

  • 김성경;이혜진;김미경
    • Journal of Nutrition and Health
    • /
    • v.34 no.5
    • /
    • pp.499-512
    • /
    • 2001
  • This study was performed to investigate effects of dried leaf powders, water, 75% and 95% ethanol extracts of persimmon leaf and green tea on lipid metabolism, lipid peroxidation and antioxidative enzyme activity in 12-month-old rats. Fifty-four male Sprague-Dawley rats weighing 542$\pm$4.5g were blocked into groups according to their body weight and were raised for four weeks with the diets containing 5%(w/w) dried leaf powders of persimmon(Diospyros kaki Thunb) and green tea(Camellia Sinensis O. Ktze), water or 75% and 95% ethanol extracts from same amount of each dried tea powder. Food intake was not significantly different among all groups, but weight gain of green tea powder group was significantly lower than that of control group. Plasma and liver lipid levels of all the tea diet groups were lower than those of control group. Especially, 75% ethanol extract of persimmon leaf decreased total lipid and triglyceride concentrations in plasma and 95% ethanol extract of persimmon leaf decreased liver total lipid level. However, there was no difference between 75% ethanol extracts groups and 95% ethanol extracts groups in lipid metabolism. Superoxide dismutase(SOD) and catalase activities in erythrocyte were remarkably increased by all the green tea diets. SOD, catalase and glutathione peroxidase activities in liver were increased by the feeding of ethanol extracts from green tea and persimmon leaf powder. Liver xanthine oxidase activity was not different among all groups. Plasma Thiobarbirutic acid reactive substance(TBARS) concentrations of all the green tea diet groups were significantly low. It was thought that high flavonoids in green tea inhibited plasma lipid peroxidation by promoting SOD, catalase activities in erythrocyte. 95% ethanol extract of persimmon leaf also inhibited plasma lipid peroxidation by high vitamin E and beta-carotene. Persimmon leaf powder decreased liver TBARS concentration by vitamin E, betacarotene and vitamin C and by increasing activities of antioxidative enzymes with flavonoids. In conclusion, dried leaf powders, water, 75% and 95% ethanol extracts of persimmon leaf and green tea were effective in lowering lipid levels and inhibiting lipid peroxidation in 12-month-old rats. Above all, ethanol extracts of persimmon leaf decreased plasma and liver lipid levels and persimmon leaf powder effectively inhibited liver lipid peroxidation. Extracts of green tea leaf inhibited plasma lipid peroxidation. In lowering lipid levels and inhibiting lipid peroxidation, ethanol extracts were more effective than water extracts, but there was no difference between 75% ethanol extracts and 95% ethanol extracts in lipid metabolism. (Korean J Nutrition 34(5) : 499~512, 2001)

  • PDF

The DNA Damage of Fish Oil Peroxidation Products 2. DNA Damage by the Peroxidation Products of Polar and Non-polar Lipid Fractionated from Mackerel Lipid (어유산화생성물의 DNA손상작용 2. 극성 및 비극성지질획분산화생성물의 DNA 손상작용)

  • KANG Jin-Hoon;Do Jung-Roung;KIM In-Soo;KIM Seon-Bong;PARK Young-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.4
    • /
    • pp.300-307
    • /
    • 1987
  • The present study was investigated on the DNA damage by the peroxidation of polar and non-polar lipid fractionated from mackerel lipid to elucidate the DNA damage mechanism by fish oil peroxidation. The degree of DNA damage by polar lipid peroxidation became greater with the increase of its concentration, and such DNA damage was induced below 100 millieq./kg in POV for 4 days incubation. Among the polar lipid peroxidation products, singlet oxygen $^1O_2$ and superoxide anion ${\cdot}O_2^-$ greatly affected to the DNA damage than hydrogen peroxide $H_2O_2$ and hydroxyl radical ${\cdot}OH$. Non-polar lipid peroxidation also induced the DNA damage with the increase of its concentration, but such effect was lower than the case of total lipid and polar lipid. And, the effects of active crygens on the DNA damage by non-polar lipid peroxidation was the same as in the case of total and polar lipid peroxidation.

  • PDF

Scavenging Effects of Free Radicals and Inhibitory Effects of Lipid Peroxidation of Bupleury Radix Aqua-Acupuncture Solution in Vitro (시호 약침제제의 자유기 소거능 및 지질과산화 억제효능에 관한 연구)

  • Moon Jin-Young;Lim Jong-Kook
    • Journal of Acupuncture Research
    • /
    • v.15 no.2
    • /
    • pp.135-145
    • /
    • 1998
  • Bupleury radix has been used for the treatment of fever, liver disease, inflammation in traditional medicine. The present study was carried out to evaluate the antioxidant effects of Bupleury radix aqua-acupuncture solution (BRAS) in vitro. Oxygen derived free radicals produced in the course of normal aerobic life, such as superoxide anion radical($O_2^-$ ), hydroxyl radicaI( OH), hydrogen peroxide($H_2O_2$) and singlet oxygen($^1O_2$) can attack polyunsaturated fatty acid in cell membranes, enzymes, other cell compounds, and give rise to lipid peroxidation, DNA damage, lipofuscin accumulation, structure alteration of cell membrane and cell death. In this study, antioxidant effects of BRAS on lipid peroxidation were determined according to the method of TBA. BRAS inhibited markedly peroxidation of linoleic acid during the autoxidation, and also inhibited lipid peroxidation induced by hydroxyl radical derived from $H_2O_2-Fe^{2+}$ in rat liver homogenate. And BRAS showed 30% scavenging effect on DPPH radical, also exhibited a 30% inhibitory effect on superoxide generation from xanthine-xanthine oxidase system. In addition, BRAS protected the cell death induced by tert-butyl hydroperoxide(t-BHP) and significantly increased cell viability in the normal rat liver cell(Ac2F).

  • PDF