• Title/Summary/Keyword: liquid circulation velocity

Search Result 27, Processing Time 0.02 seconds

Effect of the Liquid Circulation Velocity on the Biofilm Development in an IFBBR (역 유동층 생물막 반응기에서 액체순환속도가 생물막에 미치는 영향)

  • 김동석;윤준영
    • Journal of Environmental Science International
    • /
    • v.3 no.1
    • /
    • pp.49-56
    • /
    • 1994
  • Effect of the liquid circulation velocity on the biofilm development was investigated in an inverse fluidized bed biofilm reactor(IFBBR). To observe the effect of the influent COD concentration on biofilm simultaneously, the influent COD value was adjusted to 1000mg/1 f for 1st reactor, and 2500mg/l for 2nd reactor. The liquid circulation velocity was adjusted by controlling the initial liquid height. As the liquid circulation velocity was decreased, the settling amount of biomass was increased and the amount of effluent biomass was decreased. Since the friction of liquid was decreased by the decrease of liquid circulation velocity, the biofilm thickness was increased and the biofilm dry density was decreased. In the 1st reactor the SCOD removal efficiency was constant regardless of the variation of the liquid circulation velocity, but it was increased by the decrease of the liquid circulation velocity because of more biomass population in 2nd reactor.

  • PDF

Hydrodynamic Characteristics in a Hexagonal Inverse Fluidized Bed (장방형 역유동층의 동력학적 특성)

  • 박영식;안갑환
    • Journal of Environmental Science International
    • /
    • v.5 no.1
    • /
    • pp.93-102
    • /
    • 1996
  • Hydrodynamic characteristics such as gas holdup, liquid circulation velocity and bed expansion in a hexagonal inverse fluidized bed were investigated using air-water system by changing the ratio ($A_d$/$A_r$) of cross-sectional area between the riser and the downcomer, the liquid level($H_1$/H), and the superficial gas velocity($U_g$). The gas holdup and the liquid circulation velocity were steadily increased with the superficial gas velocity increasing, but at high superficial gas velocity, some of gas bubbles were carried over to a downcomer and circulated through the column. When the superficial gas velocity was high, the $A_d$/$A_r$ ratio in the range of 1 to 2.4 did not affect the liquid circulation velocity, but the maximum bed expansion was obtained at $A_d$/$A_r$ ratio of 1.25. The liquid circulation velocity was expressed as a model equation below with variables of the cross-sectional area ratio($A_d$/$A_r$) between riser to downcomer, the liquid level($H_1$/H), the superficial gas velocity($U_g$), the sparser height[(H-$H_s$)/H], and the draft Plate level($H_b$/H). $U_{ld}$ = 11.62U_g^{0.75}$${(\frac{H_1}{H})}^{10.30}$${(\frac{A_d}{A_r})}^{-0.52}$${(\frac({H-H_s}{H})}^{0.91}$${(\frac{H_b}{H})}^{0.13}$

  • PDF

A Model for Liquid Circulation Velocity in Airlift Reactors (공기부양반응기 내에서의 액체순환속도를 위한 모델)

  • Keun Ho Choi
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.446-455
    • /
    • 2023
  • A mathematical model for predicting the liquid circulation velocity in an airlift reactor was developed based on the mechanical energy balance of the fluid circulation loop. The model considered the energy loss due to a 90° turn, the energy loss due to friction, and the energy loss due to the change in cross-sectional area at each part of the reactor. The model that separately considered the loss coefficients related to friction, direction change, and cross-sectional area change was able to predict the liquid circulation velocity better than the previous model using lumped parameters. The liquid circulation velocity was measured by the tracer pulse method. Most of our experimental results obtained in external-loop airlift reactors, which had the top and bottom connecting pipes, as well as other investigators' results obtained in various types of airlift reactors, were well predicted by the developed model with an error within 20%. Useful empirical equations for the loss coefficient related to the 90° turn of the circulating fluid were obtained in external and internal-loop airlift reactors and used to predict the liquid circulation velocity.

Dynamic Characteristics of External loop Air-Lift Reactor (외부 순환 공기리프트 반응기의 동특성)

  • 강귀현;김춘영정봉우
    • KSBB Journal
    • /
    • v.7 no.1
    • /
    • pp.59-65
    • /
    • 1992
  • Hydrodynamics and mixing characteristics such as circulation time, mixing time, circulation velocity and axial dispersion coefficient were investigated using highly viscous pseudoplastic solutions of carboxymethyl cellulose(CMC) in an external circulation loop air-lift reactor with 13$\ell$ working volume. The superficial gas velocity was changed from 1.9 to 6.2cm/s and CMC concentration from 0 to 1.0wt%. The theoretical model based on the pressure balance is developed mathematically to predict liquid circulation velocity. Gas hold-up, circulation velocity and axial dispersion coefficient of liquid phase increased with increasing gas velocity and decreased slightly with increasing liquid viscosity. Mixing time and circulation time decreased with increasing gas velocity and increased with increasing liquid viscosity. Experimental data on liquid circulation velocity were in good agreement with the predicted values.

  • PDF

Effect of Liquid Circulation Velocity and Cell Density on the Growth of Parietochloris incisa in Flat Plate Photobioreactors

  • Changhai Wang;Yingying Sun;Ronglian Xing;Liqin Sun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.2
    • /
    • pp.103-108
    • /
    • 2005
  • For more accurately describing the durations of the light and the dark phases of micro-algal cells over the whole light-dark cycle, and probing into the relationship between the liquid circulation time or velocity, the aeration rate and cell density, a series of experiments was carried out in 10 cm light-path flat plate photobioreactors. The results indicated that the liquid flow in the flat plate photobioreactor could be described by liquid dynamic equations, and a high biomass output, higher content and productivity of arachidonic acid, $70.10\;gm^{-2}d^{-1},\;9.62\%$ and 510.3 mg/L, respectively, were obtained under the optimal culture conditions.

Characteristics of Gas-liquid Mass Transfer and Interfacial Area in a Bubble Column

  • Lim, Dae Ho;Yoo, Dong Jun;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.315-320
    • /
    • 2015
  • Characteristics of gas-liquid mass transfer and interfacial area were investigated in a bubble column of diameter and height of 0.102 m and 2.5 m, respectively. Effects of gas and liquid velocities on the volumetric gas-liquid mass transfer coefficient ($k_La$), interfacial area (a) and liquid side true mass transfer coefficient ($k_L$) were examined. The interfacial area and volumetric gas-liquid mass transfer coefficient were determined directly by adopting the simultaneous physical desorption of $O_2$ and chemical absorption of $CO_2$ in the column. The values of $k_La$ and a increased with increasing gas velocity but decreased with increasing liquid velocity in the bubble column which was operated in the churn turbulent flow regime. The value of $k_L$ increased with increasing gas velocity but did not change considerably with increasing liquid velocity. The liquid side mass transfer was found to be related closely to the liquid circulation as well as the effective contacting frequency between the bubbles and liquid phases.

Effects of Operating Variables on the Solid Circulation Rate in a Three-phase Circulating Fluidized Bed

  • Kim, Min Kon;Hong, Sung Kyu;Lim, Dae Ho;Yoo, Dong Jun;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.440-444
    • /
    • 2015
  • Effects of operating variables on the solid circulation rate were investigated in a three-phase circulating fluidized bed, of which inside diameter was 0.102m and height was 3.5m, respectively. Gas velocity, primary and secondary liquid velocities, particle size and height of solid particles piled up in the solid recycle device were chosen as operating variables. The solid circulation rate increased with increasing primary and secondary liquid velocities and height of solid particles piled up in the solid recycle device, but decreased with increasing particle size. The value of solid circulation rate decreased only slightly with increasing gas velocity in the riser. The values of solid circulation rate were well correlated in terms of dimensionless groups within the experimental conditions.

Dynamic Behavior of an Internal Loop Reactor during Scale-up (내부순환반응기의 Scale-up에 따른 동력학적 특성의 변화)

  • 최윤찬;박영식
    • Journal of Environmental Science International
    • /
    • v.6 no.1
    • /
    • pp.25-31
    • /
    • 1997
  • The variations of gas hold-up, overall volumetric oxygen mass transfer coefficients and liquid circulation velocity in an internal loop reactor were investigated to manifest scale-up effect. The relationship between superficial gas velocity and gas hold-up were found as Ugr = 0.045 $\varepsilon$r in the pilot-scale and Ugr = 0.056 $\varepsilon$r in the bench-scale reactor. The overall volumetric oxygen mass tractsfer coefficient, KLa was slightly increased in the pilot-scale than in the bench-scale reactor. Flow regime was changed from the bubble flow to the churn-turbulent flow when the superficial gas velocity reached to 3.5 - 4 cm/sec in the pilot-scale.

  • PDF

Solid Circulation Rate in a 3-phase (gas/liquid/solid) Viscous Circulating Fluidized Bed

  • Jang, Hyung Ryun;Yoon, Hyuen Min;Yang, Si Woo;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.186-190
    • /
    • 2018
  • For the first time, the characteristics of solid circulation rate ($G_S$) were investigated in a three-phase (gas-liquid-solid) viscous circulating fluidized bed (TPCFB). The solid circulation rate was controlled separately by adjusting the experimental apparatus as well as operating variables. Effects of primary and secondary liquid velocities ($U_{L1}$ and $U_{L2}$), gas velocity ($U_G$), particle size ($d_p$), height of particles piled up in the solid recycle device (h), and viscosity of continuous liquid media (${\mu}_L$) on the value of $G_S$ were determined. The experimental results showed that the value of $G_S$ increased with increases in the values of $U_{L1}$, $U_{L2}$, h and ${\mu}_L$, while it decreased with increasing $U_G$ and $d_p$ in TPCFBs with viscous liquid media. The values of $G_S$ were well correlated in terms of dimensionless groups within this experimental conditions.

Solid Circulation Rate in a Viscous Liquid-Solid Circulating Fluidized Bed (점성유체 액/고 순환유동층에서 입자의 순환속도)

  • Hong, Sung Kyu;Jang, Hyung Ryun;Lim, Dae Ho;Yoo, Dong Jun;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.706-711
    • /
    • 2016
  • Characteristics of solid circulation rate in the liquid-solid circulating fluidized beds with viscous liquid medium were investigated. Effects of primary and secondary liquid velocities, particle size, liquid viscosity and height of solid particles piled up in the solid recycle device on the solid circulation rate were considered. The solid circulation rate increased with increasing primary and secondary liquid velocities, liquid viscosity and height of solid particles in the downcommer, but it decreased with increasing particle size. The particle rising velocity in the riser decreased with increasing the ratio of $U_{L1}/U_{L2}$ and particle size. The slip velocity of liquid and particle, $U_L/U_S$, decreased with increasing liquid viscosity but it increased with increasing particle size. The values of solid circulation rate were well correlated in terms of operating variables and dimensionless groups.