• Title/Summary/Keyword: locating system

Search Result 319, Processing Time 0.026 seconds

Subdivision of Certain Barbell Operation of Origami Graphs has Locating-Chromatic Number Five

  • Irawan, Agus;Asmiati, Asmiati;Zakaria, La;Muludi, Kurnia;Utami, Bernadhita Herindri Samodra
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.79-85
    • /
    • 2021
  • The locating-chromatic number denote by 𝛘𝐿(G), is the smallest t such that G has a locating t-coloring. In this research, we determined locating-chromatic number for subdivision of certain barbell operation of origami graphs.

Design and Implementation of RF based locating System for NLOS Environment (비가시성을 고려한 RF 기반 측위 시스템의 설계 및 구현)

  • Choi, Hoon;Baek, Yun-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7A
    • /
    • pp.654-661
    • /
    • 2011
  • RTLS (Real-time locating systems) are used for tracking the location of people or assets in real time. In this system, RTLS readers continuously communicate with RTLS tags for measuring time or ranges and location engine tries to calculate accurate location of tags. However, when we attempt to apply this system to real world, the non-line-of-sight(NLOS) problem can be critical to the system performance because of the obstacles. In this paper, we suggest a new location estimation method for an NLOS environment using a reader-selection strategy. We have implemented all components of the locating system and carried out experiments in a test-bed. The accuracy of the system is 50% better than that of the existing general locating system.

Real Time Transporter Locating System for Shipyard through GNSS and IMU Sensor (GNSS와 IMU센서를 활용한 실시간 트랜스포터 위치추적 시스템)

  • Mun, SeungHwan;An, JongWoo;Lee, Jangmyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.5
    • /
    • pp.439-446
    • /
    • 2019
  • A real time transporter locating system for shipyard has been implemented through the GNSS and IMU sensor. There are a lot of block movements by transporters at the shipyard, which need to be controlled and monitored for conforming to the shipbuilding process. For the precise and safe transporter motion at the yard, a locating system has been developed by using the GNSS and IMU sensors for the transporter. There are several obstacles of the GPS signals for locating the transporter at the yard, such as, buildings and metal structures. To overcome the weakness of the GPS signal transmission, the IMU data have been properly integrated together. The performance of the proposed real time block locating system has been verified through the real experiments with transporters carrying blocks at a shipyard.

A Procedure for Determining The Locating Chromatic Number of An Origami Graphs

  • Irawan, Agus;Asmiati, Asmiati;Utami, Bernadhita Herindri Samodra;Nuryaman, Aang;Muludi, Kurnia
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.31-34
    • /
    • 2022
  • The concept of locating chromatic number of graph is a development of the concept of vertex coloring and partition dimension of graph. The locating-chromatic number of G, denoted by χL(G) is the smallest number such that G has a locating k-coloring. In this paper we will discussed about the procedure for determine the locating chromatic number of Origami graph using Python Programming.

Location Information Reliability-Based Precision Locating System Using NLOS Condition Estimation (NLOS 상태 추정을 이용한 위치 정보 신뢰성 기반의 정밀 위치 측정 시스템)

  • Son, Sanghyun;Choi, Hoon;Cho, Hyuntae;Baek, Yunju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.1
    • /
    • pp.97-108
    • /
    • 2013
  • Recently, mobile devices were increased and there was a sharp rise in demand. To exploit the location information of each device, many researcher was studying locating systems. The favorite locating or positioning systems were a GPS using satellites and a RTLS using wireless communication between devices. If some obstacle existed nearby the target device, The system have difference of performance. The obstacles near targets were caused signal disconnection and reflection because of NLOS condition. As the result, the NLOS condition degrade the locating performance. In this paper, we propose a locating system which is cooperated two systems using information reliability estimates from LOS/NLOS condition. We developed proposed system. In addition, we performed fields test and simulation tests at various environment for performance evaluation. As the result, the test showed 97% success rate to estimate NLOS condition. Furthermore, the simulation result of our locating system was increased to 89% compared with a single system.

Efficient Congestion Control Utilizing Message Eavesdropping in Asynchronous Range-Based Localization

  • Choi, Hoon;Baek, Yunju;Lee, Ben
    • ETRI Journal
    • /
    • v.35 no.1
    • /
    • pp.35-40
    • /
    • 2013
  • Asynchronous ranging is one practical method to implement a locating system that provides accurate results. However, a locating system utilizing asynchronous ranging generates a large number of messages that cause transmission delays or failures and degrades the system performance. This paper proposes a novel approach for efficient congestion control in an asynchronous range-based locating system. The proposed method significantly reduces the number of messages generated during the reader discovery phase by eavesdropping on other transmissions and improves the efficiency of ranging by organizing the tags in a hierarchical fashion in the measurement phase. Our evaluation shows that the proposed method reduces the number of messages by 70% compared to the conventional method and significantly improves the success rate of ranging.

An ESPRIT-Based Super-Resolution Time Delay Estimation Algorithm for Real-Time Locating Systems (실시간 위치 추적 시스템을 위한 ESPRIT 기반의 초 분해능 지연 시간 추정 알고리즘)

  • Shin, Joon-Ho;Park, Hyung-Rae;Chang, Eun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.4
    • /
    • pp.310-317
    • /
    • 2013
  • In this paper an ESPRIT-based super-resolution time delay estimation algorithm is developed for real-time locating system (RTLS) and its performance is analyzed in various multipath environments. The performance of the existing correlation method for time delay estimation seriously degrades in multipath environments where the relative time delays of multipath signals are less than a PN chip. To solve the problem we shall develop a frequency domain super-resolution time delay estimation algorithm using the ESPRIT, the most representative super-resolution direction-of-arrival (DOA) estimation algorithm, and analyze its performance in various multipath environments.

Development of Real-Time Locating System for Construction Safety Management (건설 안전관리를 위한 실시간 위치추적(RTLS)기술 개발)

  • Lee, Kwang-Pyo;Lee, Hyun-Soo;Park, Moon-Seo;Kim, Hyun-Soo;Baek, Yun-Ju
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.2
    • /
    • pp.106-115
    • /
    • 2010
  • Recently, as the size of construction projects are getting bigger and higher, more effective managing methods are required in management areas such as duration reduction, cost reduction and quality management. In the current construction industry, conjunction with IT(Information Technology) is being noticed as a solution to support these needs. Various IT solutions such as Bar Code, Personal digital assistant(PDA), global positioning system(GPS), radio frequency identification(RFID) are being developed. In this research, among the various IT solutions, the Real Time Locating System(RTLS) which is acknowledged as a technology with high applicational potential is analyzed. Based on this analysis, a locating system to apply in construction sites is developed and validated. The locating system is developed to prevent construction disasters through real-time management of workers and equipment, which enables effective application in the area of construction safety management. Moreover, applications of the locating system in many different areas like construction material realtime monitoring, construction automation, construction quality management, maintenance management are expected.

Design and Implementation of Real Time Locating System for Efficient Vehicle Pooling in Port Terminal (항만 터미널 내 차량의 효율적 풀링을 위한 실시간 위치 측정 시스템 설계 및 구현)

  • Son, Sang-Hyun;Cho, Hyun-Tae;Beak, Yun-Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.9
    • /
    • pp.2056-2063
    • /
    • 2012
  • In a port terminal, containers are stored and transshipped by yard tractors and crane vehicles. For operation efficiency of the terminal, location information of these vehicles is an essential factor. However, most of port terminals try to estimate location of these assets using indirect methods such as event tracking of shipping or unshipping containers. Because these kinds of events are rarely occurred, location of the event includes seriously locating error compared to a real location of vehicle. In this paper, we propose a real-time asset tracking system to obtain accurate and reliable location of terminal assets. The proposed system overcomes a location estimation error caused by container stacks which interrupt wireless communication. In order to mitigate uncertainty and increase accuracy of location estimation, we designed hardwares and multi-step locating system to resolve additional preblems. We implemented system components, and installed these at a port environment for evaluation. The result shows superiority of the system that the accuracy is approximately 5.87 meters (CEP).

A Study on Advanced Fault Locating for Short Fault of a Double Circuit Transmission Line (병행 2회선 송전선로의 선간단락시 고장점 표정의 개선에 관한 연구)

  • Park, Yu-Yeong;Park, Chul-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.1
    • /
    • pp.28-37
    • /
    • 2016
  • Fault locating is an important element to minimize the damage of power system. The computation error of fault locator may occur by the influence of the DC offset component during phasor extraction. In order to minimize the bad effects of DC offset component, this paper presents an improved fault location algorithm based on a DC offset removal filter for short fault in a double circuit transmission line. We have modeled a 154kV double circuit transmission line by the ATP software to demonstrate the effectiveness of the proposed fault locating algorithm. The line to line short faults were simulated and then collected simulation data was used. It can be seen that the error rate of fault locating estimation by the proposed algorithm decreases than the error rate of fault locating estimation by conventional algorithm.