• Title/Summary/Keyword: long span

Search Result 1,114, Processing Time 0.035 seconds

Development of computational software for flutter reliability analysis of long span bridges

  • Cheng, Jin
    • Wind and Structures
    • /
    • v.15 no.3
    • /
    • pp.209-221
    • /
    • 2012
  • The flutter reliability analysis of long span bridges requires use of a software tool that predicts the uncertainty in a flutter response due to uncertainties in the model formulation and input parameters. Existing flutter analysis numerical codes are not capable of dealing with stochastic uncertainty in the analysis of long span bridges. The goal of the present work is to develop a software tool (FREASB) to enable designers to efficiently and accurately conduct flutter reliability analysis of long span bridges. The FREASB interfaces an open-source Matlab toolbox for structural reliability analysis (FERUM) with a typical deterministic flutter analysis code. The paper presents a brief introduction to the generalized first-order reliability method implemented in FREASB and key steps involved in coupling it with a typical deterministic flutter analysis code. A numerical example concerning flutter reliability analysis of a long span suspension bridge with a main span of 1385 m is presented to demonstrate the application and effectiveness of the methodology and the software.

A Study on the Design Parameters of the PSC I-Type Girders for Long Span Bridges (장지간 교량을 위한 PSC-I형 거더의 단면 설계변수 연구)

  • 심종성;오홍섭;김민수
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.13-22
    • /
    • 2000
  • In order to resolve the problem of increasing traffic entailed by the economic development, road system is reorganization and new highways are built, and long span bridges over 40m are being constructed in environmental and aesthetic considerations. Most long span bridges that are currently being constructed are in general steel box girder and preflex girder bridges; however these types of breiges are less efficiency than PSC I-type girder bridges in terms of construction cost and maintenance. Therefore, in these study, structural efficiency of PSC I-type girders based on section parameters, concrete compressive strength and other design parameter is observed to develope new PSC I-type girder for long span bridges. As a results of analysis, most important design parameters that control the stress of the girder are found to be the top flange width and the height of girder. In this light, the relationship between the two variables is determined and cross-section details of the girder that most appropriates for the long span bridges are proposed. The use of high strength concrete appears to increase the general design span however the increase rate of the span from increasing concrete ultimate strength appears to be reduced depending on the span. Also, the optimal girder spacing is determined through the parameter studies of design span using the proposed girder.

Investigation of seismic performance of super long-span cable-stayed bridges

  • Zhang, Xin-Jun;Zhao, Chen-Yang;Guo, Jian
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.493-503
    • /
    • 2018
  • With the further increase of span length, the cable-stayed bridge tends to be more slender, and becomes more susceptible to the seismic action. By taking a super long-span cable-stayed bridge with main span of 1400m as example, structural response of the bridge under the E1 horizontal and vertical seismic excitations is investigated numerically by the multimode seismic response spectrum and time-history analysis respectively, the seismic behavior and also the effect of structural nonlinearity on the seismic response of super long-span cable-stayed bridge are revealed. Furthermore, the effect of structural parameters including the girder depth and width, the tower structural style, the tower height-to-span ratio, the side-tomain span ratio, the auxiliary piers in side spans and the anchorage system of stay cables etc on the seismic performance of super long-span cable-stayed bridge is investigated numerically by the multimode seismic response spectrum analysis, and the favorable earthquake-resistant structural system of super long-span cable-stayed bridge is proposed.

Vortex induced vibration and its controlling of long span Cross-Rope Suspension transmission line with tension insulator

  • Tu, Xi;Wu, Ye;Li, Zhengliang;Wang, Zhisong
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.87-102
    • /
    • 2021
  • Long span cross-rope suspension structure is an innovative structural system evolved from typical Cross-Rope Suspension (CRS) guyed tower, a type of supporting system with short span suspension cable supporting overhead power transmission lines. In mountainous areas, the span length of suspension cable was designed to be extended to hundreds or over one thousand meters, which is applicable for crossing deep valleys. Vortex Induced Vibration (VIV) of overhead power transmission lines was considered to be one of the major factors of its fatigue and service life. In this paper, VIV and its controlling by Stockbridge damper for long span CRS was discussed. Firstly, energy balance method and finite element method for assessing VIV of CRS were presented. An approach of establishing FE model of long span CRS structure with dampers was introduced. The effect of Stockbridge damper for overall vibration of CRS was compared in both theoretical and numerical approaches. Results indicated that vibration characteristics of conductor in long span CRS compared with traditional tower-line system. Secondly, analysis on long span CRS including Stockbridge damper showed additional dampers installed were essential for controlling maximum dynamic bending stresses of conductors at both ends. Moreover, factors, including configuration and mass of Stockbridge damper, span length of suspension cable and conductor and number of spans of conductor, were assessed for further discussion on VIV controlling of long span CRS.

Dynamic Behavior of a Long-Span Bridge Considering Soil-Structure Interaction (지반-구조물 상호작용을 고려한 장대교량의 동적 거동)

  • Lim, Che-Min;Park, Jang-Ho;Shin, Yung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.119-124
    • /
    • 2004
  • The effect of soil-structure interaction becomes important in the design of civil structures such as long-span bridges, which are constructed in the site composed of soft soil. Many methodologies have been developed to account for the proper consideration of soil-structure interaction effect. However, it is difficult to estimate soil-structure interaction effect accurately becaused of many uncertainties. This paper presents the results of study on soil-structure interaction and dynamic response of a long-span bridge designed in the site composed of soft soil. The effect of the soft soil was evaluated by the use of computer program SASSI and a long-span bridge structure was modeled by finite elements. Dynamic response characteristics of a long-span bridge considering soil-structure interaction wereinvestigated.

Reliability based analysis of torsional divergence of long span suspension bridges

  • Cheng, Jin;Li, Q.S.
    • Wind and Structures
    • /
    • v.12 no.2
    • /
    • pp.121-132
    • /
    • 2009
  • A systematic reliability evaluation approach for torsional divergence analysis of long span suspension bridges is proposed, consisting of the first order reliability method and a simplified torsional divergence analysis method. The proposed method was implemented in the deterministic torsional divergence analysis program SIMTDB through a new strategy involving interfacing the proposed method with SIMTDB via a freely available MATLAB software tool (FERUM). A numerical example involving a detailed computational model of a long span suspension bridge with a main span of 888 m is presented to demonstrate the applicability and merits of the proposed method and the associated software strategy. Finally, the most influential random variables on the reliability of long span suspension bridges against torsional divergence failure are identified by a sensitivity analysis.

Innovation of Bridge Structural Systems to Realize a Super Long-span Suspension Bridge (Gwangyang Bridge) (초장대현수교(광양대교)의 실현을 위한 교량구조시스템의 혁신)

  • Kim, Hong-Sik;Kwon, Ho-Chul;Song, Myung-Kwan;Paik, Jong-Gyun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.551-556
    • /
    • 2007
  • In this paper, the contents of numerical in the innovative tender design of the super long-span suspension bridge to be constructed between Myodo and are introduced. The total span length of the bridge, of which the main span is the third in the world so far, reaches 2,260km, and the has the floating type girder which has no vertical points at pylon. Judging from the condition of navigation, wind climate on, and construction cost, it is inevitable to make the central span 1,545m and to the technical level applied to the structural components in the existing suspension system. To realize the innovative super long-span suspension bridge, the close numerical investigations for the structural capacity, aerodynamic serviceability, and dynamic serviceability are carried out by various tools of computational mechanics.

  • PDF

Study of seismic performance of super long-span partially earth-anchored cable-stayed bridges

  • Zhang, Xin-Jun;Yu, Cong;Zhao, Jun-Jie
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.99-111
    • /
    • 2019
  • To investigate the seismic performance of long-span partially earth-anchored cable-stayed bridge, a super long-span partially earth-anchored cable-stayed bridge scheme with main span of 1400m is taken as example, structural response of the bridge under E1 seismic action is investigated numerically by the multimode seismic response spectrum and time-history analysis, seismic behavior and also the effect of structural geometric nonlinearity on the seismic responses of super long-span partially earth-anchored cable-stayed bridges are revealed. The seismic responses are also compared to those of a fully self-anchored cable-stayed bridge with the same main span. The effects of structural parameters including the earth-anchored girder length, the girder width, the girder depth, the tower height to span ratio, the inclination of earth-anchored cables, the installation of auxiliary piers in the side spans and the connection between tower and girder on the seismic responses of partially ground-anchored cable-stayed bridges are investigated, and their reasonable values are also discussed in combination with static performance and structural stability. The results show that the horizontal seismic excitation produces significant seismic responses of the girder and tower, the seismic responses of the towers are greater than those of the girder, and thus the tower becomes the key structural member of seismic design, and more attentions should be paid to seismic design of these sections including the tower bottom, the tower and girder at the junction of tower and girder, the girder at the auxiliary piers in side spans; structural geometric nonlinearity has significant influence on the seismic responses of the bridge, and thus the nonlinear time history analysis is proposed to predict the seismic responses of super long-span partially earth-anchored cable-stayed bridges; as compared to the fully self-anchored cable-stayed bridge with the same main span, several stay cables in the side spans are changed to be earth-anchored, structural stiffness and natural frequency are both increased, the seismic responses of the towers and the longitudinal displacement of the girder are significantly reduced, structural seismic performance is improved, and therefore the partially earth-anchored cable-stayed bridge provides an ideal structural solution for super long-span cable-stayed bridges with kilometer-scale main span; under the case that the ratio of earth-anchored girder length to span is about 0.3, the wider and higher girder is employed, the tower height-to-span ratio is about 0.2, the larger inclination is set for the earth-anchored cables, 1 to 2 auxiliary piers are installed in each of the side spans and the fully floating system is employed, better overall structural performance is achieved for long-span partially earth-anchored cable-stayed bridges.

Experimental and numerical study on the collapse failure of long-span transmission tower-line systems subjected to extremely severe earthquakes

  • Tian, Li;Fu, Zhaoyang;Pan, Haiyang;Ma, Ruisheng;Liu, Yuping
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.513-522
    • /
    • 2019
  • A long-span transmission tower-line system is indispensable for long-distance electricity transmission across a large river or valley; hence, the failure of this system, especially the collapse of the supporting towers, has serious impacts on power grids. To ensure the safety and reliability of transmission systems, this study experimentally and numerically investigates the collapse failure of a 220 kV long-span transmission tower-line system subjected to severe earthquakes. A 1:20 scale model of a transmission tower-line system is constructed in this research, and shaking table tests are carried out. Furthermore, numerical studies are conducted in ABAQUS by using the Tian-Ma-Qu material model, the results of which are compared with the experimental findings. Good agreement is found between the experimental and numerical results, showing that the numerical simulation based on the Tian-Ma-Qu material model is able to predict the weak points and collapse process of the long-span transmission tower-line system. The failure of diagonal members at weak points constitutes the collapse-inducing factor, and the ultimate capacity and weakest segment vary with different seismic wave excitations. This research can further enrich the database for the seismic performance of long-span transmission tower-line systems.

Type Suggestion and Parameter Study for Long-Span Bridge of High-Speed Railway without the REJ considering CWR Axial Force (장대레일 축력을 고려한 REJ 미적용 고속철도 특수교량 형식 제시 및 변수별 분석)

  • Lee, Jong-Soon;Joo, Hwan-Joong;Shin, Jai-Yeoul;Yoon, Sung-Sun;Park, Sun-Hee;Nam, Hyoung-Mo
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1254-1261
    • /
    • 2011
  • Application of long-span bridge, which is affected by parameters such as span length, shoe boundary condition, track property and stiffness of superstructure and substructure etc., can vary. Especially, by CWR aspects of the axial force, long-span high speed railway bridges are limited at type and span length. In this study, in terms of CWR axial force, the long-span high-speed railway bridges without REJ(Rail Expansion Joint) is to propose the bridge type. Various Parameters analysis performed for the proposed type(Arch bridge, Cable-stayed bridge).

  • PDF