• Title/Summary/Keyword: long span

Search Result 1,114, Processing Time 0.029 seconds

Operational modal analysis of a long-span suspension bridge under different earthquake events

  • Ni, Yi-Qing;Zhang, Feng-Liang;Xia, Yun-Xia;Au, Siu-Kui
    • Earthquakes and Structures
    • /
    • v.8 no.4
    • /
    • pp.859-887
    • /
    • 2015
  • Structural health monitoring (SHM) has gained in popularity in recent years since it can assess the performance and condition of instrumented structures in real time and provide valuable information to the asset's manager and owner. Operational modal analysis plays an important role in SHM and it involves the determination of natural frequencies, damping ratios and mode shapes of a constructed structure based on measured dynamic data. This paper presents the operational modal analysis and seismic response characterization of the Tsing Ma Suspension Bridge of 2,160 m long subjected to different earthquake events. Three kinds of events, i.e., short-distance, middle-distance and long-distance earthquakes are taken into account. A fast Bayesian modal identification method is used to carry out the operational modal analysis. The modal properties of the bridge are identified and compared by use of the field monitoring data acquired before and after the earthquake for each type of the events. Research emphasis is given on identifying the predominant modes of the seismic responses in the deck during short-distance, middle-distance and long-distance earthquakes, respectively, and characterizing the response pattern of various structural portions (deck, towers, main cables, etc.) under different types of earthquakes. Since the bridge is over 2,000 m long, the seismic wave would arrive at the tower/anchorage basements of the two side spans at different time instants. The behaviors of structural dynamic responses on the Tsing Yi side span and on the Ma Wan side span under each type of the earthquake events are compared. The results obtained from this study would be beneficial to the seismic design of future long-span bridges to be built around Hong Kong (e.g., the Hong Kong-Zhuhai-Macau Bridge).

Finite element model updating effect on the structural behavior of long span concrete highway bridges

  • Altunisik, A.C.;Bayraktar, A.
    • Computers and Concrete
    • /
    • v.14 no.6
    • /
    • pp.745-765
    • /
    • 2014
  • In this paper, it is aimed to determine the finite element model updating effects on the structural behavior of long span concrete highway bridges. Birecik Highway Bridge located on the 81stkm of Sanliurfa-Gaziantep state highway over Firat River in Turkey is selected as a case study. The bridge consist of fourteen spans, each of span has a nearly 26m. The total bridge length is 380m and width of bridge is 10m. Firstly, the analytical dynamic characteristics such as natural frequencies and mode shapes are attained from finite element analyses using SAP2000 program. After, experimental dynamic characteristics are specified from field investigations using Operational Modal Analysis method. Enhanced Frequency Domain Decomposition method in the frequency domain is used to extract the dynamic characteristics such as natural frequencies, mode shapes and damping ratios. Analytically and experimentally identified dynamic characteristics are compared with each other and finite element model of the bridge is updated to reduce the differences by changing of some uncertain parameters such as section properties, damages, boundary conditions and material properties. At the end of the study, structural performance of the highway bridge is determined under dead load, live load, and dynamic loads before and after model updating to specify the updating effect. Displacements, internal forces and stresses are used as comparison parameters. From the study, it is seen that the ambient vibration measurements are enough to identify the most significant modes of long span highway bridges. Maximum differences between the natural frequencies are reduced averagely from %46.7 to %2.39 by model updating. A good harmony is found between mode shapes after finite element model updating. It is demonstrated that finite element model updating has an important effect on the structural performance of the arch type long span highway bridge. Maximum displacements, shear forces, bending moments and compressive stresses are reduced %28.6, %21.0, %19.22, and %33.3-20.0, respectively.

Evaluation of torsional response of a long-span suspension bridge under railway traffic and typhoons based on SHM data

  • Xia, Yun-Xia;Ni, Yi-Qing;Zhang, Chi
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.4
    • /
    • pp.371-392
    • /
    • 2014
  • Long-span cable-supported bridges are flexible structures vulnerable to unsymmetric loadings such as railway traffic and strong wind. The torsional dynamic response of long-span cable-supported bridges under running trains and/or strong winds may deform the railway track laid on the bridge deck and affect the running safety of trains and the comfort of passengers, and even lead the bridge to collapse. Therefore, it is eager to figure out the torsional dynamic response of long-span cable-supported bridges under running trains and/or strong winds. The Tsing Ma Bridge (TMB) in Hong Kong is a suspension bridge with a main span of 1,377 m, and is currently the world's longest suspension bridge carrying both road and rail traffic. Moreover, this bridge is located in one of the most active typhoon-prone regions in the world. A wind and structural health monitoring system (WASHMS) was installed on the TMB in 1997, and after 17 years of successful operation it is still working well as desired. Making use of one-year monitoring data acquired by the WASHMS, the torsional dynamic responses of the bridge deck under rail traffic and strong winds are analyzed. The monitoring results demonstrate that the differences of vertical displacement at the opposite edges and the corresponding rotations of the bridge deck are less than 60 mm and $0.1^{\circ}$ respectively under weak winds, and less than 300 mm and $0.6^{\circ}$ respectively under typhoons, implying that the torsional dynamic response of the bridge deck under rail traffic and wind loading is not significant due to the rational design.

Coupled buffeting response analysis of long-span bridges by the CQC approach

  • Ding, Quanshun;Chen, Airong;Xiang, Haifan
    • Structural Engineering and Mechanics
    • /
    • v.14 no.5
    • /
    • pp.505-520
    • /
    • 2002
  • Based on the modal coordinates of the structure, a finite-element and CQC (complete quadratic combination) method for analyzing the coupled buffeting response of long-span bridges is presented. The formulation of nodal equivalent aerodynamic buffeting forces is derived based on a reasonable assumption. The power spectral density and variance of nodal displacements and elemental internal forces of the bridge structure are computed using the finite-element method and the random vibration theory. The method presented is very efficient and can consider the arbitrary spectrum and spatial coherence of natural winds and the multimode and intermode effects on the buffeting responses of bridge structures. A coupled buffeting analysis of the Jiangyin Yangtse River Suspension Bridge with 1385 in main span is performed as an example. The results analyzed show that the multimode and intermode effects on the buffeting response of the bridge deck are quite remarkable.

Nonlinear aerostatic analysis of long-span suspension bridge by Element free Galerkin method

  • Zamiria, Golriz;Sabbagh-Yazdi, Saeed-Reza
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.75-84
    • /
    • 2020
  • The aerostatic stability analysis of a long-span suspension bridge by the Element-free Galerkin (EFG) method is presented in this paper. Nonlinear effects due to wind structure interactions should be taken into account in determining the aerostatic behavior of long-span suspension bridges. The EFG method is applied to investigate torsional divergence of suspension bridges, based on both the three components of wind loads and nonlinearities of structural geometric. Since EFG methods, which are based on moving least-square (MLS) interpolation, require only nodal data, the description of the geometry of bridge structure and boundaries consist of defining a set of nodes. A numerical example involving the three-dimensional EFG model of a suspension bridge with a span length of 888m is presented to illustrate the performance and potential of this method. The results indicate that presented method can effectively be applied for modeling suspension bridge structure and the computed results obtained using present modeling strategy for nonlinear suspension bridge structure under wind flow are encouragingly acceptable.

Chord bearing capacity in long-span tubular trusses

  • Kozy, B.;Boyle, R.;Earls, C.J.
    • Steel and Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.103-122
    • /
    • 2006
  • The capacity of tubular truss chords subjected to concentrated reaction forces in the vicinity of the open end (i.e., the bearing region) is not directly treated by existing design specifications; although capacity equations are promulgated for related tubular joint configurations. The lack of direct treatment of bearing capacity in existing design specifications seems to represent an unsatisfactory situation given the fact that connections very often control the design of long-span tubular structures comprised of members with slender cross-sections. The case of the simple-span overhead highway sign truss is studied, in which the bearing reaction is applied near the chord end. The present research is aimed at assessing the validity of adapting existing specifications' capacity equations from related cases so as to be applicable in determining design capacity in tubular truss bearing regions. These modified capacity equations are subsequently used in comparisons with full-scale experimental results obtained from testing carried out at the University of Pittsburgh.

Aeroelastic instability of long-span bridges: contributions to the analysis in frequency and time domains

  • Sepe, Vincenzo;Caracoglia, Luca;D'Asdia, Piero
    • Wind and Structures
    • /
    • v.3 no.1
    • /
    • pp.41-58
    • /
    • 2000
  • According to research currently developed by several authors (including the present ones) a multimode approach to the aeroelastic instability can be appropriate for suspension bridges with very long span and so with close natural frequencies. Extending that research, this paper deals in particular with: i) the role of along-wind modes, underlined also by means of the flutter mode representation; ii) the effects of a variation of the mean wind speed along the span. A characterisation of the response in the time domain by means of an energetic approach is also discussed.

A method for nonlinear aerostatic stability analysis of long-span suspension bridges under yaw wind

  • Zhang, Wen-Ming;Ge, Yao-Jun;Levitan, Marc L.
    • Wind and Structures
    • /
    • v.17 no.5
    • /
    • pp.553-564
    • /
    • 2013
  • By using the nonlinear aerostatic stability theory together with the method of mean wind decomposition, a method for nonlinear aerostatic stability analysis is proposed for long-span suspension bridges under yaw wind. A corresponding program is developed considering static wind load nonlinearity and structural nonlinearity. Taking a suspension bridge with three towers and double main spans as an example, the full range aerostatic instability is analyzed under wind at different attack angles and yaw angles. The results indicate that the lowest critical wind speed of aerostatic instability is gained when the initial yaw angle is greater than $0^{\circ}$, which suggests that perhaps yaw wind poses a disadvantage to the aerostatic stability of a long span suspension bridge. The results also show that the main span in upstream goes into instability first, and the reason for this phenomenon is discussed.

A Study on the Design Meghod for PSC I Girders with additional Prestress (프리트스레스를 단계적으로 도입하는 PSC I형 거더의 설계에 관한 연구)

  • 한만엽;김양현;진경석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.375-380
    • /
    • 1999
  • It is required efficient section shape like bulb-tee girders with high strength concrete to construct long span bridges economically. However, the trpical design method for PSC I-girders include bulb-tees, the concrete girder prestressed only one time at same time. But in this paper, new design method prestress increases as each load-stress stage. The incrementally prestressed concrete (IPC) girders can reduce the required area of grider section and extend span length by additional prestress. So it is able to construct long span bridges economically by using IPC girders.

  • PDF

Behavior Character Analysis of Super Long Suspension Bridge using GNSS (GNSS를 활용한 초장대 현수교의 거동 특성 분석)

  • Park, Je-Sung;Hong, Seunghwan;Kim, Mi-Kyeong;Kim, Tai-Hoon;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.831-840
    • /
    • 2019
  • Recently, the span length of long-span bridges is getting longer. As a result, it has been suggested that a new concept called 'super long-span bridge'. In case of super long span bridges, the structure is being complicated and the importance of structural stability is being emphasized. However, until recently, the most commonly used sensors (dual axis clinometer, anemometer, strain gauge, etc.) have got limit about the bridge monitoring. Consequently, we researched the application of a Global Navigation Satellite System (GNSS) to improve the limit of the existing sensors. In this study, the dual axis clinometer, the anemometer and the strain gauge together with the GNSS were used to analyze the behavior of a super-long suspension bridge. Also, we propose the detailed method of bridge monitoring using the GNSS. This study consisted of three steps. First step calculated the absolute coordinates of the towers and the longitudinal axis direction of the study bridge using the GNSS. In second step, through the analysis of the long-term behavior in shortly after construction, we calculated the permanent displacement and evaluated the stability of main towers. Third step analyzed the behavior of bridge by the wind direction and was numerically indicated. Consequently, the bridge measurement using the GNSS appeared that the acquired data is able to easy processing according to the analysis purpose. If we will use together the existing measurement sensors with the GNSS on the maintenance of the super long-span bridge, we figure each error of measurement data and improve the monitoring system through calibration. As a result, we acquire the accurate displacement of bridge and figure the behavior of bridge. Consequently, we identified that it is able to construct the effective monitoring system.