• 제목/요약/키워드: longitudinal shear strength

검색결과 213건 처리시간 0.032초

Experimental investigation of longitudinal shear behavior for composite floor slab

  • Kataoka, Marcela N.;Friedrich, Juliana T.;El Debs, Ana Lucia H.C.
    • Steel and Composite Structures
    • /
    • 제23권3호
    • /
    • pp.351-362
    • /
    • 2017
  • This paper presents an experimental study on the behavior of composite floor slab comprised by a new steel sheet and concrete slab. The strength of composite slabs depends mainly on the strength of the connection between the steel sheet and concrete, which is denoted by longitudinal shear strength. The composite slabs have three main failures modes, failure by bending, vertical shear failure and longitudinal shear failure. These modes are based on the load versus deflection curves that are obtained in bending tests. The longitudinal shear failure is brittle due to the mechanical connection was not capable of transferring the shear force until the failure by bending occurs. The vertical shear failure is observed in slabs with short span, large heights and high concentrated loads subjected near the supports. In order to analyze the behavior of the composite slab with a new steel sheet, six bending tests were undertaken aiming to provide information on their longitudinal shear strength, and to assess the failure mechanisms of the proposed connections. Two groups of slabs were tested, one with 3000 mm in length and other with 1500 mm in length. The tested composite slabs showed satisfactory composite behavior and longitudinal shear resistance, as good as well, the analysis confirmed that the developed sheet is suitable for use in composite structures without damage to the global behavior.

RC 사각단면 기둥의 전단거동특성과 축방향철근비를 고려한 초기전단강도 (Characteristics of the shear behavior of RC rectangular sectional columns and initial shear strength considering the ratio of longitudinal bars)

  • 이종석;선창호;김익현
    • 한국지진공학회논문집
    • /
    • 제14권2호
    • /
    • pp.27-36
    • /
    • 2010
  • 횡하중을 받는 RC 기둥의 전단강도는 기둥의 변위연성도가 증가함에 따라 감소하는 것으로 알려져 있다. 연성도의 증가에 따른 전단강도의 감소율은 초기전단강도에 따라 크게 좌우되므로 이를 합리적으로 예측하기 위해서는 초기전단강도의 평가가 매우 중요하다. 기둥의 전단거동은 단면모양, 형상비, 축력, 축방향철근비, 연성도 등 다양한 요인에 의하여 영향을 받아 복잡하다. 본 연구에서는 형상비, 단면의 중공비, 축방향철근비, 중공 및 중실단면을 변수로 하는 시험체를 제작하여 실험적 연구를 수행하여 전단거동특성을 살펴보았다. 또한, 축방향철근이 전단강도에 미치는 영향을 분석하여 형상비와 축력을 고려한 기존의 초기전단평가식을 보완하였으며, 그 타당성을 검증하였다.

수평보강재가 있는 판형복부판의 극한전단거동에 관한 실험연구 (Experimental Study on Ultimate Shear Behaviour of Longitudinally Stiffened Plate Girder Web Panels)

  • 이명수
    • 한국강구조학회 논문집
    • /
    • 제11권2호통권39호
    • /
    • pp.167-179
    • /
    • 1999
  • 판형복부판의 좌굴강도를 높이기 위하여 수평보강재나 수직보강재를 대는 방법이 많이 적용되고 있다. 경제적인 판형의 설계를 위하여 복부판의 두께를 얇게 하는 대신, 복부판의 전단강도를 높이기 위하여 수직보강재를 사용하게된다. 수직보강재가 있는 복부판의 극한전단강도의 산정에 관한 연구는 1960년 초반부터 활발하게 진행되어 왔고, 이 결과가 미국의 AASHTO 시방서(1973)와 영국의 British Standard(1983)에 처음 반영되어 현재에 이르고 있다. 수평보강재의 주 역할은 휨응력에 의한 복부판의 좌굴강도를 높이고 횡변위를 억제하는 것이지만, 부수적으로 전단강도를 증가시키는 효과가 있는 것으로 알려지고 있다. 하지만, 이에 대한 연구의 부족으로 인하여 수평보강재가 복부판의 극한전단강도에 미치는 영향이 실제 설계시 반영되지 않고 있다. 본 연구에서는 실험을 통하여 수평보강재가 판형의 극한전단거동에 미치는 영향을 조사하고 이를 기존의 이론들과 비교 검토하였다.

  • PDF

Experimental investigations on composite slabs to evaluate longitudinal shear strength

  • Saravanan, M.;Marimuthu, V.;Prabha, P.;Arul Jayachandran, S.;Datta, D.
    • Steel and Composite Structures
    • /
    • 제13권5호
    • /
    • pp.489-500
    • /
    • 2012
  • Cold-formed steel profile sheets acting as decks have been popularly used in composite slab systems in steel structural works, since it acts as a working platform as well as formwork for concreting during construction stage and also as tension reinforcement for the concrete slab during service. In developing countries like India, this system of flooring is being increasingly used due to the innate advantage of these systems. Three modes of failure have been identified in composite slab such as flexural, vertical shear and longitudinal shear failure. Longitudinal shear failure is the one which is difficult to predict theoretically and therefore experimental methods suggested by Eurocode 4 (EC 4) of four point bending test is in practice throughout world. This paper presents such an experimental investigation on embossed profile sheet acting as a composite deck where in the longitudinal shear bond characteristics values are evaluated. Two stages, brittle and ductile phases were observed during the tests. The cyclic load appears to less effect on the ultimate shear strength of the composite slab.

전단경간비와 주인장철근비가 철근콘크리트 보의 최소전단철근비에 미치는 영향 (Effects of Shear Span-to-depth Ratio and Tensile Longitudinal Reinforcement Ratio on Minimum Shear Reinforcement Ratio of RC Beams)

  • 이정윤;김욱연;김상우;이범식
    • 콘크리트학회논문집
    • /
    • 제16권6호
    • /
    • pp.795-803
    • /
    • 2004
  • 현행 구조설계기준식에서는 취성적으로 파괴하는 최소전단보강철근 파괴를 방지하기 위하여 철근콘크리트 보에 최소전단보강철근을 배근하도록 규정하고 있다. 최소전단철근비는 콘크리트의 압축강도와 함께 주인장철근비와 전단경간비에 영향을 받는다. 이 연구에서는 주인장철근비와 전단경간비가 철근콘크리트 보의 최소전단철근비에 미치는 영향을 파악하기 위하여 14개의 철근콘크리트 보를 실험하였다. 실험에 의하면 전단 여유율은 주인장철근비가 증가할수록 증가하였고, 전단경간비가 증가할수록 감소하였다. 실험 결과는 ACI 318-02 기준식과 선행 연구의 제안식과 비교되었다.

철근콘크리트보의 인장철근비와 크기효과에 의한 전단강도 특성 연구 (A Characteristic Study on Shear Strength of Reinforced Concrete Beams according to Longitudinal Reinforcement Ratio and Size Effect)

  • 유인근;노형진;이호경;백승민;김우석;곽윤근
    • 대한건축학회논문집:구조계
    • /
    • 제36권2호
    • /
    • pp.117-126
    • /
    • 2020
  • The main objective of this experimental study is to investigate shear strength of reinforced concrete beams according to longitudinal reinforcement ratio (ρ) and size effect. In order to find out the shear strength according to the tensile reinforcement ratio, in particular, the main variables are 100%, 75% and 50% of ρ=0.01 which is widely used in construction field. A total of twelve RC beams were tested under 4-point loading conditions. In addition to the existing proposal equations, the theoretical values such as KBC and ACI equations are compared with the experimental data. Through this analysis, this study is designed to provide more reasonable equations for shear design of reinforced concrete beams. When shear reinforcement bar spacing of nine specimens (R*-1, R*-2, and R*-3 series) fixed as d/s=2.0 and three specimens of R*-4 series fixed as d/s=1.5 are compared, the shear strength of two groups showed similar values. As a result, the current standard of d/s=2.0 for shear reinforcement bar spacing may be somewhat alleviated.

The design of reinforced concrete beams for shear in current practice: A new analytical model

  • Londhe, R.S.
    • Structural Engineering and Mechanics
    • /
    • 제31권2호
    • /
    • pp.225-235
    • /
    • 2009
  • The present paper reviews the shear design (of reinforced concrete beam) provisions of four different national codes and proposes a new but simplified shear strength empirical expression, incorporating variables such as compressive strength of concrete, percentage of longitudinal and vertical steel/s, depth of beam in terms of shear span-to-depth ratio, for reinforced concrete (RC) beams without shear reinforcement. The expression is based on the experimental investigation on RC beams without shear reinforcement. Further, the comparisons of shear design provisions of four National codes viz.: (i) IS 456-2000, (iii) BS 8110-1997, (iv) ACI 318-2002 (v) EuroCode-2-2002 and the proposed expression for the prediction of shear capacity of normal beam/s, have been made by solving a numerical example. The results of the numerical example worked out suggest that there is need for revision in the shear design procedure of different codes. Also, the proposed expression is less conservative among the IS, BS & Eurocode.

Design for shear strength of concrete beams longitudinally reinforced with GFRP bars

  • Thomas, Job;Ramadassa, S.
    • Structural Engineering and Mechanics
    • /
    • 제53권1호
    • /
    • pp.41-55
    • /
    • 2015
  • In this paper, a model for the evaluation of shear strength of fibre reinforced polymer (FRP)-reinforced concrete beams is given. The survey of literature indicates that the FRP reinforced beams tested with shear span to depth ratio less than or equal to 1.0 is limited. In this study, eight concrete beams reinforced with GFRP rebars without stirrups are cast and tested over shear span to depth ratio of 0.5 and 1.75. The concrete compressive strength is varied from 40.6 to 65.3 MPa. The longitudinal reinforcement ratio is varied from 1.16 to 1.75. The experimental shear strength and load-deflection response of the beams are determined and reported in this paper. A model is proposed for the prediction of shear strength of beams reinforced with FRP bars. The proposed model accounts for compressive strength of concrete, modulus of FRP rebar, longitudinal reinforcement ratio, shear span to depth ratio and size effect of beams. The shear strength of FRP reinforced concrete beams predicted using the proposed model is found to be in better agreement with the corresponding test data when compared with the shear strength predicted using the eleven models published in the literature. Design example of FRP reinforced concrete beam is also given in the appendix.

Flexural and shear behavior of large diameter PHC pile reinforced by rebar and infilled concrete

  • Bang, Jin-Wook;Lee, Bang-Yeon;Kim, Yun-Yong
    • Computers and Concrete
    • /
    • 제25권1호
    • /
    • pp.75-81
    • /
    • 2020
  • The purpose of this paper is to provide an experimental and analytical study on the reinforced large diameter pretensioned high strength concrete (R-LDPHC) pile. R-LDPHC pile was reinforced with infilled concrete, longitudinal, and transverse rebar to increase the flexural and shear strength of conventional large diameter PHC (LDPHC) pile without changing dimension of the pile. To evaluate the shear and flexural strength enhancement effects of R-LDPHC piles compared with conventional LDPHC pile, a two-point loading tests were conducted under simple supported conditions. Nonlinear analysis on the basis of the conventional layered sectional approach was also performed to evaluate effects of infilled concrete and longitudinal rebar on the flexural strength of conventional LDPHC pile. Moreover, ultimate strength design method was adopted to estimate the effect of transverse rebar and infilled concrete on the shear strength of a pile. The analytical results were compared with the results of the bending and shear test. Test results showed that the flexural strength and shear strength of R-LDPHC pile were increased by 2.3 times and 3.3 times compared to those of the conventional LDPHC pile, respectively. From the analytical study, it was found that the flexural strength and shear strength of R-LDPHC pile can be predicted by the analytical method by considering rebar and infilled concrete effects, and the average difference of flexural strength between experimental results and calculated result was 10.5% at the ultimate state.

An Experimental Study on Shear Strength of Chemically-Based Self-Consolidating Concrete

  • Arezoumandi, Mahdi;Volz, Jeffery S.
    • International Journal of Concrete Structures and Materials
    • /
    • 제7권4호
    • /
    • pp.273-285
    • /
    • 2013
  • An experimental investigation was conducted to compare the shear strength of full-scale beams constructed with chemically-based, self-consolidating concrete (SCC) with conventional concrete (CC). This experimental program consisted of 16 rectangular beams (12 without shear reinforcing and 4 with shear reinforcing in the form of stirrups), 8 beams for each mix design. Additionally, three different longitudinal reinforcement ratios were evaluated within the test matrix. The beam specimens were tested under a simply supported four-point condition. The experimental shear strengths of the beams were compared with both the shear provisions of selected standards (U.S., Australia, Canada, Europe, and Japan) and a shear database of CC specimens. This comparison indicates that chemically-based SCC beams possess comparable shear strength as CC beams.