• 제목/요약/키워드: longitudinal stresses in the rails

검색결과 6건 처리시간 0.023초

고속전철 교각의 강성도 산정을 위한 현장실험 (Field Test on Rigidities of Piers in High-speed Railway)

  • 진원종;곽종원;김병석;박성용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.745-750
    • /
    • 2000
  • The rigidity of pier is important in the analysis of rail on high speed railway bridges. This study is being performed because of followings. 1) Actual longitudinal stiffness of the structure including substructure should be considered in the calculation of longitudinal stresses in rails. 2) There are many uncertainties in piers and foundations for design. 3) Actual guideline for the design of piers is necessary. 4) Measurement on the rigidity of pier according to the types of pier, foundation and soil-condition is needed. Curve for rigidity will be obtained through this study and applied for actual design as the guideline. Stresses in rails can be estimates accurately. A pair of piers, which consists of pot-bearing for fixed support and pad-bearing for movable support, is loaded by steel frame through steel wire ropes. The responses which are intended to measure in the field test are displacements, forces and tilts on the top of piers.

  • PDF

고속철도교량 하부구조 강성도에 관한 현장실험 (Field Test on the Rigidities of Substructures of High Speed Railway Bridges)

  • 진원종;최은석;곽종원;강재윤;조정래;김병석
    • 한국철도학회논문집
    • /
    • 제9권1호
    • /
    • pp.118-124
    • /
    • 2006
  • SThe rigidities of bridge substructures are the important data in the rail-bridge interaction analysis in Korean High -Speed Railway. This experimental study is being performed because of followings. 1) More correct longitudinal stiffness of the structure including substructure should be considered in the calculation of stresses in rails. 2) There are many uncertainties in the design and construction of the piers and foundations. 3) Actual guideline for the rigidities of piers and foundations in the design is necessary. 4) Measurement on the rigidity of pier according to the types of piers, foundations and soil-conditions is needed. Curve for estimating the total rigidity of substructure will be obtained through this and further experimental studies. It may be used in the analysis of Korean High-Speed Railway bridge and then, longitudinal stresses in the rails can be estimated more accurately. One pair of piers, which consist of pot-bearing for fixed support and pad-bearing for movable support, are loaded by steel frame devices with steel wire ropes and hydraulic jack. The responses which are measured at each loading stages in those field tests are displacements and tilted angles on the top and bottom of piers. This study is being performed testing and analysis about several piers in the construction field.

굴곡측정법을 이용한 신 레일의 잔류응력 분석 (Residual Stress Analysis of New Rails Using Contour Method)

  • 송민지;최욱진;임남형;김동규;우완측;이수열
    • 한국도시철도학회논문집
    • /
    • 제6권4호
    • /
    • pp.393-399
    • /
    • 2018
  • 레일의 잔류응력은 레일의 피로 및 파괴 특성에 영향을 끼치는 인자로서, 레일의 가공 및 열처리 등 생산 과정 단계에서 이미 형성되며, 이를 정확하게 분석하는 기술은 매우 중요한 문제이다. 본 연구에서는 레일 내부에 존재하는 잔류응력을 측정하기 위하여, 잔류응력 분석방법의 하나인 파괴법 기반 굴곡측정법을 적용하여 레일 축 방향의 잔류응력을 평가하였다. 레일의 축 방향과 수직한 단면을 방전가공을 사용하여 느린 속도로 단면을 절단한 후 레이저 기반인 굴곡 측정기를 이용하여 단면의 굴곡을 정밀 측정하였다. 측정된 데이터는 유한요소해석 프로그램 ABAQUS를 활용하여 설정한 요소로 잔류응력으로 변환시켰으며, 총 3종의 다른 규격을 갖고 있는 신 레일 (50N, KR60, UIC60)의 잔류응력 값의 경향과 수치를 비교하였다.

The Evaluation of Axial Stress in Continuous Welded Rails via Three-Dimensional Bridge-Track Interaction

  • Manovachirasan, Anaphat;Suthasupradit, Songsak;Choi, Jun-Hyeok;Kim, Bum-Joon;Kim, Ki-Du
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1617-1630
    • /
    • 2018
  • The crucial differences between conventional rail with split-type connectors and continuous welded rails are axial stress in the longitudinal direction and stability, as well as other issues generated under the influence of loading effects. Longitudinal stresses generated in continuously welded rails on railway bridges are strongly influenced by the nonlinear behavior of the supporting system comprising sleepers and ballasts. Thus, the track structure interaction cannot be neglected. The rail-support system mentioned above has properties of non-uniform material distribution and uncertainty of construction quality. The linear elastic hypothesis therefore cannot correctly evaluate the stress distribution within the rails. The aim of this study is to apply the nonlinear finite element method using the nonlinear coupling interface between the track and structural model and to illustrate the welded rail behavior under the loading effect and uncertain factors of the ballast. Numerical results of nonlinear finite analysis with a three-dimensional solid and frame element model are presented for a typical track-bridge system. A composite plate girder, modeled by solid and shell elements, is also analyzed to consider the behavior of the welded rail. The analysis result showed buckling under the independent calculations of load cases, including 'temperature change', 'bending of the supporting structure', and 'braking' of the railway vehicle. A parametric study of the load combination method and the loading sequence is also included in this analysis.

복부절단법에 의한 레일의 잔류응력에 관한 연구 (A study ell the residual stress in rail by the web saw-cut method)

  • 서정원;구병춘;정우현
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 추계학술대회 논문집
    • /
    • pp.234-241
    • /
    • 1999
  • Rails have residual stresses produced during manufacturing processes. The residual stresses play all important role on brittle fracture, fatigue strength and derailment by producing cracks in the web of rail. The web saw-cut test is a technique developed to measure the bulk longitudinal residual stress level. It is a simple mettled to estimate a stress intensity factor, $_{4}$ for a web crack by using the radii of curvature of the upper and lower portions of a cut rail. But according to this method, $_{4}$ varies along the rail length because the curvatures along tile rail length vary In this paper, tile residual stress was estimated by Finite Element Method and tile web saw-cut method. In addition tile variation of the residual stress with time was investigated.

  • PDF

Experimental and numerical investigation of track-bridge interaction for a long-span bridge

  • Zhang, Ji;Wu, Dingjun;Li, Qi;Zhang, Yu
    • Structural Engineering and Mechanics
    • /
    • 제70권6호
    • /
    • pp.723-735
    • /
    • 2019
  • Track-bridge interaction (TBI) problem often arises from the adoption of modern continuously welded rails. Rail expansion devices (REDs) are generally required to release the intensive interaction between long-span bridges and tracks. In their necessity evaluations, the key techniques are the numerical models and methods for obtaining TBI responses. This paper thus aims to propose a preferable model and the associated procedure for TBI analysis to facilitate the designs of long-span bridges as well as the track structures. A novel friction-spring model was first developed to represent the longitudinal resistance features of fasteners with or without vertical wheel loadings, based on resistance experiments for three types of rail fasteners. This model was then utilized in the loading-history-based TBI analysis for an urban rail transit dwarf tower cable-stayed bridge installed with a RED at the middle. The finite element model of the long-span bridge for TBI analysis was established and updated by the bridge's measured natural frequencies. The additional rail stresses calculated from the TBI model under train loadings were compared with the measured ones. Overall agreements were observed between the measured and the computed results, showing that the proposed TBI model and analysis procedure can be used in further study.