• Title/Summary/Keyword: longitudinal wave

Search Result 477, Processing Time 0.031 seconds

Dynamic Stress Analysis on Impact Load in 2-Dimensional Plate (충격하중이 작용하는 평판의 동적 응력 해석)

  • 황갑운;조규종
    • Computational Structural Engineering
    • /
    • v.8 no.1
    • /
    • pp.137-146
    • /
    • 1995
  • Structural stress under shock or impact load is varied with the lapse of time and the structural stress is called stress wave. Propagating longitudinal stress wave is studied in a 2-dimensional plate. A finite element program for elastic stress wave propagation is developed in order to investigate the shape of stress field at time increment. The longitudinal stress wave is generated by unit step function. According to the finite element analysis results, the longitudinal stress wave propagates to the similar direction of impact load and the front of stress wave propagates with the same speed as analytic solution and the shape of stress field is similar to that of analytic solution. The shear wave is occurred after the longitudinal stress wave and declined at an angle of 45 degrees compared with longitudinal stress wave and the speed of shear wave is about a half of the longitudinal stress wave. The intensity of shear wave is larger than that of longitudinal stress wave.

  • PDF

Resolution Enhancement of Scanning Tomographic Acoustic Microscope System

  • Ko, Daesik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.1E
    • /
    • pp.70-76
    • /
    • 1996
  • We proposed to use shear waves instead of longitudinal waves in a STAM (scanning tomographic acoustic microscope system) in which the specimens are solid. For any specimen with a shear modulus, mode conversion will take place at the water-solid interface. Some of the energy of the insonifying longitudinal waves in the water will convert to shear wave energy within the specimen. The shear wave energy is detectable and can be used for tomographic reconstruction. The resolution limitation of STAM depends on the available angular view and the acoustic wavelength. While wave transmission in most solid specimens is limited to about 20°for longitudinal waves, we show that it is about twice that high for shear waves. Since the wavelength of the shear wave is shorter than that of the longitudinal wave, we are able to achieve the high resolution. In order to compare the operation of a shear-wave STAM with that of the conventional longitudinal-wave STAM we have simulated tomographic reconstruction for each. Our simulation results with aluminum specimen and back-and-forth propagation algorithm showed resolution of a shear-wave STAM is better than that of a longitudinal-wave STAM.

  • PDF

Assessment of Incipient Decay of Radiata Pine Wood Using Stress-Wave Technique in the Longitudinal Direction (수축방향(樹軸方向) 응력파(應力波) 방법(方法)에 의(依)한 라디에타소나무의 초기부후(初期腐朽) 평가(評價))

  • Kim, Gyu-Hyeok;Jee, Woo-Kuen;Ra, Jong-Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.1-6
    • /
    • 1996
  • This study was performed to investigate the feasibility of using sonic stress-wave technique in the longitudinal direction for the assessment of incipient decay of radiata pine wood. Decayed bending specimens by Tyromyces palustris and Gloeophyllum trabeum for varoious periods were tested nondestructively using stress-wave technique in the longitudinal direction and destructively. Decay detection, quantitative assessment of decay, and the prediction of residual strength of decayed wood with less than five percent weight loss can be feasible using stress-wave parameters (wave velocity, wave impedance, stress-wave elasticity) measured by stress-wave technique in the longitudinal direction and their percent reduction due to decay.

  • PDF

A Study on Stress Wave Propagation by Finite Element Analysis (유한요소법에 의한 2차원 응력파 전파 해석에 관한 연구)

  • 황갑운;조규종
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3369-3376
    • /
    • 1994
  • A finite element program for elastic stress wave propagation is developed in order to investigate the shape of stress field and analysis the magnitude of stress wave intensity at time increment. Accuracy and reliance of the finite element analysis are acquired when the element size is smaller than the product of the stress wave speed and the critical value of increasing time step. In the finite element analysis and theoretical solution, the longitudinal stress wave is propagated to the similar direction of impact load, and the stress wave intensity is expressed in terms of the ratio of propagated area. The direction of shear wave is declined at an angle of 45 degrees compared with longitudinal stress wave and the speed of shear wave is half of the longitudinal stress wave.

Effect of Anisotropic Ratio for Rayleigh Wave of a Half-Infinite Composite Material (반 무한 복합체의 Rayleigh 표면파에 대한 이방성비의 영향)

  • Baek, Un-Cheol;Hwang, Jae-Seok;Song, Yong-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.502-509
    • /
    • 2001
  • In this paper, when stress waves are propagated along the reinforced direction of the composite, the characteristic equation of Rayleigh wave is derived. The relationships between velocities of stress waves and Rayleigh wave are studied for anisotropic ratios(E(sub)11/E(sub)12 or E(sub)22/E(sub)11). The increments of anisotropic ratios is made by using known material properties and being constant of basic properties. When the anisotropic ratios are increased, Rayleigh wave velocities to the shear wave velocities are almost equal to 1 with any anisotropic ratios. Rayleigh wave velocities to the longitudinal wave velocities and Shear wave velocities ratio to the longitudinal wave velocities are almost identical each other, they are between 0.12 and 0.21. When the anisotropic ration is very high, that is, E(sub)11/E(sub)22=46.88, Rayleigh wave velocities and the shear wave velocities are almost constant with Poissons ratio, longitudinal wave velocities are very slowly increased with the increments of Poissons ratios. When E(sub)11(elastic modulus of the reinforced direction)and ν(sub)12 are constant, Rayleigh wave velocities and the shear wave velocities are steeply decreased with the increments of anisotropic ratios and the velocities of longitudinal wave are almost constant with them. When E(sub)22(elastic modulus of the normal direction to the fiber) and ν(sub)12 are constant, Rayeigh wave velocities is slowly increased with the increments of anisotropic ratios, the shear wave velocities are almost constant with them, the longitudinal wave velocities are steeply increased with them.

Study on active vibration control based on wave viewpoint using the longitudinal wave separation method (종파 분리 방법을 이용한 파동 관점의 능동 진동 제어)

  • Jung, Byung-Bo;Park, Young-Jin;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.928-933
    • /
    • 2007
  • In this research, we investigated active vibration control based on wave-viewpoint using the longitudinal wave separation method. The control strategy is the one of active vibration control technique for generating vibration reduced zone and uses wave information including the directivity as the cost function. In order to get the wave information from the measured values, we proposed and examined the time-domain longitudinal wave separation method proper to real time application like active vibration control. Using the proposed method, we examine the performance and feasibility of active vibration control based wave view-point through the simulation. The related experimental verification and application is going to be expected in a near future.

  • PDF

Development of Advanced One-sided Stress Wave Velocity Measurement in Concrete (콘크리트의 응력파 속도 측정을 위한 One-sided technique 개발)

  • ;;J.S.Popovice;J.D.Achenbach
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.537-543
    • /
    • 1997
  • A new procedure for the advanced one-side measurement of longitudinal wave and surface wave velocities in concrete is presented in this paper. Stress waves are generated in a consistent fashion with a DC solenoid. Two piezoelectric accelerometers are mounted on the surface of a specimen as receivers. Stress waves propagate along the surface of the specimen and are detected by the receivers. In order to reduce the large incoherent noise levels of the signals, signals are collected and manipulated by a computer program for each velocity measurement. For a known distance between the two receivers and using the measured flight times, the velocities of the longitudinal wave and the surface wave are measured. The velocities of the longitudinal wave determined by this method are compared with those measured by conventional methods on concrete, PMMA and steel.

  • PDF

Propagation characteristics of longitudinal wave, shear wave and bending wave in porous circular nanoplates

  • Shan, Wubin;Deng, Zulu;Zhong, Hao;Mo, Hu;Han, Ziqiang;Yang, Zhi;Xiang, Chengyu;Li, Shuzhou;Liu, Peng
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.551-559
    • /
    • 2020
  • On the basis of nonlocal strain gradient theory, considering the material properties of porous FGM changing with thickness and the influence of moment of inertia, the wave equation of FG nano circular plate is derived by using the first-order shear deformation plate theory, by introducing dimensionless parameters, we transform the equations into dimensionless wave equations, and the dispersion relations of bending wave, shear wave and longitudinal wave are obtained by Laplace and Hankel integral transformation method. The influence of nonlocal parameter, porosity volume fraction, strain gradient parameters and power law index on the propagation characteristics of bending wave, shear wave and longitudinal wave in FG nano circular plate.

Effect of Surrounding Soil Properties on the Attenuation of the First Guided Longitudinal Wave Mode Propagating in Water-filled, Buried Pipes (주변 흙의 특성이 물이 찬 매립된 배관에서 전파되는 기본 유도 종파 모드 감쇠에 미치는 영향)

  • Lee, Ju-Won;Na, Won-Bae;Shin, Sung-Woo;Kim, Jae-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.32-37
    • /
    • 2010
  • This study presents the attenuation characteristics of the first guided longitudinal wave mode propagating in water-filled, buried steel pipes in order to investigate the effects of soil saturation and compaction on the attenuation patterns. For numerical calculation of attenuation, 10 different combinations of S-wave velocity, P-wave velocity, and soil densities were considered. From the attenuation dispersion curves, which were obtained using Disperse software, we determined that the attenuation decreases as saturation increases, whereas it increases as compaction increases. Over the frequency range from 0.2 to 0.4 MHz, the first longitudinal wave mode has attenuations that are relatively lower than for other ranges, is faster than the first flexural wave mode, and is sensitive to defects aligned in the axial direction. Hence, the first longitudinal wave mode over the mentioned frequency range would be the proper choice for long-range buried pipelines that transport water.

Influence of Moisture Content on Longitudinal Wave Velocity in Concrete (수분 함유량이 콘크리트의 종파 속도에 미치는 영향에 관한 연구)

  • Lee, H.K.;Lee, K.M.;Kim, J.S.;Kim, D.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.4
    • /
    • pp.259-269
    • /
    • 1999
  • Elastic wave velocity measurement technique such as impact-echo method and ultrasonic pulse velocity method has been successfully used to evaluate the moduli and strength of concrete. However, estimation results obtained by the NDT methods do not agree well with real things because longitudinal wave velocity is influenced by various factors. In this paper, among several factors influencing P-wave velocity, the influence of moisture content in concrete was investigated through the experiment. Test results show that longitudinal wave velocity is significantly affected by the moisture content of concrete, i.e., the lower moisture content. the lower velocity. Moisture content influences rod-wave velocity measured by impact-echo method stronger than ultrasonic pulse velocity measured by transmission method. During drying process with ages. the difference of increasing rate between longitudinal wave velocity and compressive strength of concrete is gradually increased. Therefore, to establish more accurate relationship between longitudinal wave velocity and strength, the difference of the increasing rate should be considered.

  • PDF