• Title/Summary/Keyword: low speed region

Search Result 444, Processing Time 0.04 seconds

Design Study of 3 Segment Leg with Stable Region at low and high Speed Running (저속 및 고속주행에서 안정영역을 갖는 3 Segment Leg 설계 연구)

  • Kwon, Oh-Seok;Lee, Dong-Ha
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.3
    • /
    • pp.230-236
    • /
    • 2011
  • In previous researches, the self-stability was studied for the spring-mass model and the two segment leg model. In these researches, it was presented that the spring-mass model has the self-stable region at relatively high speed running and the two segment leg model has the self-stable region at relatively low speed running. If the model was run in the self-stable region, the cost of transport is zero ideally. That is, actually, only the energy loss is needed to compensate for running. This means that the energy efficiency is high, running in the self-stable region. We want to have high energy efficiency at low and high speed running. So, in this paper, we propose the design direction of the three segment leg having the self-stable region at low and high speed running. And we prove the self-stable region of the three segment leg designed by the proposed design direction.

Improvement of Low Speed Characteristics in Induction Motor Drives by Reduced Order Torque Observer (감소차원 토크관측기를 이용한 유도전동기의 저속운전특성 개선)

  • 유영석;윤덕용;홍순찬
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.177-181
    • /
    • 1997
  • In the speed control system of motors using the low resolution rotary encoder, the period of encoder pulse becomes longer than the sampling time for speed control in the range of very low speed. Therefore, it is difficult to obtain accurate speed information. In this paper, the speed estimating method at the very low speed region using reduced order torque observer, which has been widely used, is examined. The results of simulation show that the characteristics of the speed control at the very low speed region is improved by using the reduced order torque observer.

  • PDF

A Stable Sensorless Speed Control for Induction Motor in the Overall Range (전영역에서 안정된 유도전동기의 센서리스 속도제어)

  • 김종수;김성환;오세진
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.641-647
    • /
    • 2004
  • By most sensorless speed control schemes for induction motor. the control performances in high speed range are good, but it is difficult to obtain satisfactory results in low speed region. This paper proposes a new method controlling the low and the high speed regions separately to attain the stable operation in the overall range. The current error compensation method, in which the controlled stator voltage is applied to the induction motor so that the error between stator currents of the numerical model and the actual motor can be forced to decay to zero as time proceeds. is used in the low speed region In the high speed region. the method with adaptive observer is utilized. This control strategy contains an adaptive state observer for flux estimation. The rotor speed can be calculated from the rotor flux and the motor currents. The experimental results indicate good speed and load responses from the very low speed range to the high, and also show accurate speed changing performance between the low and the high speed range.

A study on Instantaneous Speed Observer for Very Low Speed Drive of Induction Motors (유도전동기의 극저속도 운전을 위한 순시속도 관측기에 관한 연구)

  • Hwang, Lark-Hoon;Na, Seung-Kwon;Jung, Nam-Gil
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.3
    • /
    • pp.117-126
    • /
    • 2012
  • This study configuration Vector Control System which is stable and has outstanding Dynamic Characteristics in Very Low Speed Region and Low Speed Region, and proposes Instantaneous Speed Observer and Very Low Speed Control method using Reduced-Dimensional State Observer. The Observer proposed in this system, by appling Reduced-Dimensional State Observer to Load-Torque estimation and using for speed estimation, implements system composition simply and is capable of accurate Instantaneous Speed estimation in Very Low Speed Region. Also, this study reduces influence by System Noise and suggests an induction motor speed control system which is effective in Load Disturbance, modeling error, estimation noise and so on without changing pole of an Observer.

A study on MRAS(Model Reference Adaptive System) Method Instantaneous Speed Observer for Very Low Speed Drive of Induction Motors (유도전동기의 극 저속도 운전을 위한 MRAS방식 순시속도 관측기에 관한 연구)

  • Hwang, Lark-Hoon;Na, Seung-Kwon;Chung, Nam-Kil;Kim, Young-Bog
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.1123-1133
    • /
    • 2012
  • This study configuration Vector Control System which is stable and has outstanding Dynamic Characteristics in Very Low Speed Region and Low Speed Region, and proposes Instantaneous Speed Observer and Very Low Speed Control method and vector control system of the speed estimation a using Reduced-Dimensional State Observer. The Observer proposed in this system, by appling Reduced-Dimensional State Observer to Load-Torque estimation and using for speed estimation, implements system composition simply and is capable of accurate Instantaneous Speed estimation in Very Low Speed Region. Also, this study reduces influence by System Noise and suggests an induction motor speed control system which is effective in Load Disturbance, modeling error, estimation noise and so on without changing pole of an Observer.

Zooming fuzzy logic controller for sensorless vector control of an induction motor in low speed region under 3Hz (3Hz 이하의 저속영역에서 유도 모터의 센서리스벡터 제어를 위한 줌잉 퍼지논리 제어기)

  • Han, Sang-Soo;Choi, Sung-Horn
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.11
    • /
    • pp.2474-2479
    • /
    • 2012
  • A sensorless vector control of an induction motor provides a good performance in the middle and high speed region. However, in the low speed region, it is very difficult to implement the sensorless vector controller because the feeding voltage measured by the motor is very low. In this paper, to improve the performance of a sensorless vector control of an induction motor in the low speed region under 3Hz, we proposed the fuzzy logic controller using the zooming algorithm. To verify the performance of the proposed controller, an experiment has been performed.

Hybrid Pulse Width Modulation Strategy for Wide Speed Range in IPMSM with Low Cost Drives

  • Ahn, Han-woong;Go, Sung-chul;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.670-674
    • /
    • 2016
  • The control performance of hybrid PWM inverter using a phase current measurement is presented in this paper. The hybrid PWM technique consists of space vector pulse width modulation (SVPWM) and six-step voltage control operation. The SVPWM is performed to reduce the harmonic components in the low speed region, and the six-step modulation is applied to increase the maximum speed of the IPMSM in the high speed region. Therefore, it is possible to obtain a great performance in both the low speed range and high speed range. However, the six-step modulation cannot be completely implemented, since the inverter that includes the lag-shunt sensing method has an immeasurable current region. In this paper, a quasi-six-step modulation using a modified voltage vector is proposed. The validity and usefulness of the proposed PWM technique is verified by MATLAB/Simulink and experimental results.

A Novel Sensorless Low Speed Vector Control for Synchronous Reluctance Motors Using a Block Pulse Function-Based Parameter Identification

  • Ahmad Ghaderi;Tsuyoshi Hanamoto;Teruo Tsuji
    • Journal of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.235-244
    • /
    • 2006
  • Recently, speed sensorless vector control for synchronous reluctance motors (SYRMs) has deserved attention because of its advantages. Although rotor angle calculation using flux estimation is a straightforward approach, the DC offset can cause an increasing pure integrator error in this estimator. In addition, this method is affected by parameter fluctuation. In this paper, to control the motor at the low speed region, a modified programmable cascaded low pass filter (MPCPLF) with sensorless online parameter identification based on a block pulse function is proposed. The use of the MPCLPF is suggested because in programmable, cascade low pass filters (PCLPF), which previously have been applied to induction motors, the drift increases vastly wl)en motor speed decreases. Parameter identification is also used because it does not depend on estimation accuracy and can solve parameter fluctuation effects. Thus, sensorless speed control in the low speed region is possible. The experimental system includes a PC-based control with real time Linux and an ALTERA Complex Programmable Logic Device (CPLD), to acquire data from sensors and to send commands to the system. The experimental results show the proposed method performs well, speed and angle estimation are correct. Also, parameter identification and sensorless vector control are achieved at low speed, as well as, as at high speed.

Least Order Load Torque.Inertia Observer for Low Speed Drive of Motor Using (전동기 극저속 운전을 위한 최소차원 부하토크.관성 관측기)

  • Kim Young-Chun;Kim Eun-Gi;Cho Moon-Taek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.575-579
    • /
    • 2006
  • In this paper, an instantaneous speed observer with a reduced order is proposed to implement an indirect control for a motor with excellent dynamic stability and performance in a very low speed region. The proposed observer can estimate the instantaneous speed in very low speed region and simplify the system configuration by adopting an least order load torque-inertia observer to estimate the load torque and the motor speed. Simulation are carried out to illustrate the performance of the proposed estimator at very low speed.

  • PDF

Low Speed Drive of Motor Using Least Order Load $Torque{\cdot}Inertia$ Observer (최소차원 토크${\cdot}$관성 관측기를 이용한 전동기 극저속 운전)

  • Kim, Eun-Gi;Jeon, Kee-Young;Oh, Bong-Hwan;Chung, Choon-Byeong;Lee, Hoon-Goo;Kim, Yong-Joo;Seo, Young-Soo;Han, Kyung-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.234-236
    • /
    • 2005
  • In this paper, an instantaneous speed observer with a reduced order is proposed to implement an indirect control for an motor with excellent dynamic stability and performance in a very low speed region. The proposed observer can estimate the instantaneous speed in very low speed region and simplify the system configuration by adopting a least order load torque-inertia observer to estimate the load torque and the rotor speed. Simulation are carried out to illustrate the performance of the proposed estimator at very low speed.

  • PDF