• 제목/요약/키워드: low-swirl nozzle

검색결과 31건 처리시간 0.036초

마이크로 가스터빈을 위한 하이브리드/이중 선회제트 연소기의 개발 (Part I: 형상 최적화를 위한 실험적 연구) (Development of a Hybrid/Dual Swirl Jet Combustor for a Micro-Gas Turbine (Part I: Experimental Study on Geometric Optimization))

  • 박태준;황철홍;이기만
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.199-200
    • /
    • 2012
  • An experimental study on geometric optimization was conducted to develop a hybrid/dual swirl jet combustor for a micro-gas turbine. A hybrid concept indicating a combination of swirling jet partially premixed and premixed flames were adopted to achieve high flame stability as well as clean combustion. Location of pilot nozzle, angle and direction of swirl vane were varied as main parameters with a constant fuel flow rate for each nozzle. The results showed that the variation in location of pilot nozzle resulted in significant change in swirl intensity due to the change in flow area near burner exit, and thus, optimized nozzle location was determined on the basis of CO and NOx emissions under conditions of co-swirl flow and swirl $angle=30^{\circ}$. The increase in swirl angle (from $30^{\circ}$ to $45^{\circ}$) enhanced the emission performances, in particular, with a significant reduction of CO emission near lean-flammability limit. It was observed that the CO emission near lean-flammability limit was further reduced through the counter-swirl flow. However, there was not significant change in the NOx emission in the operating conditions (i.e. equivalence ratio of 0.6~0.7) between the co- and the counter-swirl flow.

  • PDF

커먼 레일 시스템 고압 연료 분사용 스월 노즐 인젝터의 분사 특성에 관한 연구 (A Study on the Injection Characteristics of Swirl Nozzle Injector in Common-rail System for High Pressure Fuel Injection)

  • 신윤섭;이기수;김현철;곽상신;신석신;서현규
    • 한국자동차공학회논문집
    • /
    • 제21권4호
    • /
    • pp.89-95
    • /
    • 2013
  • In this work, the evaluation of swirl nozzle injector performance was conducted by investigating effective area ($A_{eff}$), injection mass ($m_{inj}$), injection rate ($Q_{inj}$), and injection delay ($t_{delay}$) under various test conditions. To achieve these, fuel injection analysis system which was composed of fuel supply system, injection system, and control system was installed. At the same time, the swirl nozzle that had 12 orifice hole with $120^{\circ}$ injection angle was used in this work. It was revealed that the difference of injection mass ($m_{inj}$) between base and swirl nozzle injector increased as the injection pressure ($P_{inj}$) and energizing duration ($t_{eng}$) decreased under the same test conditions. The maximum injection rate ($Q_{inj}$) of swirl nozzle injector was higher than base nozzle injector about 2~5%. The injection performance of swirl nozzle was better than base nozzle at low injection pressure ($P_{inj}$) and short energizing duration ($t_{eng}$) conditions.

마이크로 가스터빈을 위한 하이브리드/이중 선회제트 연소기의 개발 (Part II: 비반응 유동구조에 관한 수치해석) (Development of a Hybrid/Dual Swirl Jet Combustor for a Micro-Gas Turbine (Part II: Numerical Analysis on Isothermal Flow Structure))

  • 문선여;황해주;황철홍;이기만
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.201-202
    • /
    • 2012
  • The isothermal flow structure and mixing characteristics of a hybrid/dual swirl jet combustor for micro-gas turbine were numerically investigated. Location of pilot nozzle, angle and direction of swirl vane were varied as main parameters with constant fuel flow rates for each nozzle. As a result, the variation in location of pilot nozzle resulted in significant change in turbulent flow field near burner exit, in particular, center toroidal recirculation zone (CTRZ) as well as turbulent intensity, and thus flame stability and emission characteristics might be significantly changed. The swirl angle of $45^{\circ}$ provided similar recirculating flow patterns in a wide range of equivalence ratio (0.5~1.0). Compared to the co-swirl flow, the counter-swirl flow leaded to the reduction in CTRZ and fuel-air mixing near the burner exit and a weak interaction between the pilot partially premixed flame and the lean premixed flame. With the comparison of experimental results, it was confirmed that the case of co-swirl flow and swirl $angle=45^{\circ}$ would provided an optimized combustor performance in terms of flame stability and pollutant emissions.

  • PDF

저선회 연소기의 입구 속도에 따른 비반응 유동구조 분석 (Non-Reacting Flow Structure of a Low Swirl Combustor with respect to Inlet Velocities)

  • 정황희;이복직;이기만
    • 한국추진공학회지
    • /
    • 제22권6호
    • /
    • pp.56-63
    • /
    • 2018
  • 저선회 연소기에서는 노즐출구의 속도장과 예혼합화염의 전파속도 간 균형에 의해 화염이 부상되어 존재한다. 저선회 화염의 부상높이에 대한 이해는 연소기의 안정성 및 노즐팁의 열화와 관련하여 중요한 문제이다. 이전의 실험적 연구로부터 입구 속도의 증가에 따라 화염부상높이가 오히려 감소하는 현상이 관찰된 바 있다. 선회익을 통과하는 환형 유동과 난류생성판을 통과하는 중심유동 간의 복잡한 유동장을 규명하기 위하여, 입구 속도를 바꾸어가며 비반응 유동장에 대한 수치해석을 수행하였다. 입구 속도에 따른 노즐 출구에서의 유동구조를 분석하여 실험에서 관찰된 비직관적 경향에 대한 정성적 설명을 도출하였다.

와류형 고압인젝터의 초기분무의 분열 과도현상 (Transient Breakup Phenomena of Initial Spray from High-Pressure Swirl Injector)

  • 최동석;김덕줄;고장권
    • 대한기계학회논문집B
    • /
    • 제22권8호
    • /
    • pp.1132-1140
    • /
    • 1998
  • The disintegration process of initial spray from high-pressure swirl injector was investigated at different injection pressures. The transient breakup phenomena that were difficult to observe at high injection pressure were easily observed at the low injection pressure of 0.4MPa. The effect of fuel remained inside a nozzle hole volume on the penetration of initial spray was also investigated. The disintegration process of initial spray could be classified four regions: the formation of mushroom shape, the first collision, the second collision, and the development of spray, The liquid film of cup shape was particularly found in the second collision region, and the growth ratio of its length and width at low and high injection pressures were compared.

선회유동을 가지는 난류 예혼합 부상화염장의 해석 (Numerical Modeling of Turbulent Swirling Premixed Lifted Flames)

  • 강성모;김용모;정재화;안달홍
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.89-95
    • /
    • 2006
  • This study has numerically modelled the combustion processes of the turbulent swirling premixed lifted flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially-injected air jets induce the turbulent swirling flow which plays the crucial role to stabilize the turbulent lifted flame. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flamelet model. Two-dimensional and three-dimensional computations are made for the various swirl numbers and nozzle length. In terms of the centerline velocity profiles and flame liftoff heights, numerical results are compared with experimental data The three-dimensional approach yields the much better conformity with agreements with measurements without any analytic assumptions on the inlet swirl profiles, compared to the two-dimensional approach. Numerical clearly results indicate that the present level-set based flamelet approach has realistically simulated the structure and stabilization mechanism of the turbulent swirling stoichiometric and lean-premixed lifted flames in the low-swirl burner.

  • PDF

배부식 방제기를 위한 디스크형 노즐 개발 (Development of Swirl Disc Nozzles for Knapsack Sprayers)

  • 곽현환;김영주;이중용
    • Journal of Biosystems Engineering
    • /
    • 제31권3호
    • /
    • pp.153-160
    • /
    • 2006
  • This study was performed to evaluate some geometrical characteristics of disc type swirl nozzles and to develop nozzles having improved spraying performance for knapsack sprayers. Considered geometrical characteristics of the nozzles were disc thickness, orifice diameter, swirl chamber diameter and shape of the swirl chamber (nozzle chamber). 3 types of nozzle cores were compared. Main results of this study were as follows. 1. Spraying angle (A) was increased with decreasing disc thickness (x), and with increasing orifice diameter (y) or spraying pressure (z). The equation was as a follow. $$A=3.95\frac{1}{x}+73.50\sqrt{y}+18.97\sqrt{z}-60.16$$ 2. Spraying flow rate (F) was increased with decreasing disc thickness (x), and with increasing orifice diameter (y) or spraying pressure (z). The equation was as a follow. $$F=-89.95x+611.09y+620.49\sqrt{z}-868.20$$ 3. Mean spraying droplet size (V) was decreased with decreasing disc thickness (x), with increasing orifice diameter (y) in low spraying pressure, with decreasing orifice diameter (y) in high spraying pressure, and with increasing spraying pressure (z). $$V=148.77x^4-746.85x^3+1311.76x^2-917.31x$$ 4. The spray pattern was compared using CV values. The CV value of the nozzle core type 1 was 26.7% in spraying pressure $3\;kgf/cm^2$, the CV value of the core type 2 was 23.6% in spraying pressure $2\;kgf/cm^2$, the CV value of the core type 3 was 20.6% in spraying pressure $1\;kgf/cm^2$. 5. Minimum spraying pressure was improved from $1.5\;kgf/cm^2\;to\;1.0\;kgf/cm^2$ by changes of nozzle core shape.

저공해와 고안정성을 위한 신개념의 사이클론 제트 하이브리드 연소기의 연소특성 (The Combustion Characteristics of a New Cyclone Jet Hybrid Combustor for Low Pollutant Emission and High Flame Stability)

  • 정원석;황철홍;이규영;이창언
    • 대한기계학회논문집B
    • /
    • 제28권2호
    • /
    • pp.146-153
    • /
    • 2004
  • A Promising new approach to achieve low pollutant emissions and improvement of flame stability is tested experimentally using a cyclone jet hybrid combustor employing both premixed and diffusion combustion mode. Three kinds of nozzle are tested for mixing enhancement of fuel and air. The LNG (Liquified Natural Gas) is used as a fuel. The combustor is operated by two methods. One is DC (Diffusion Combustion) mode generated swirl flow by air as general swirl combustor, and the other is HC (Hybrid Combustion) mode. The HC mode consists of diffusion jet flame of axial direction and premixed cyclone flame of tangential direction in order to stabilized the diffusion jet flame. The results showed that the flame stability of HC mode is significantly enhanced than that of DC mode through the change of mixing characteristics by modifications of fuel nozzle. In addition, the reductions of CO and NOx emission in HC mode, as compared with that for the DC mode, is large than about 50% in stable region. Also, even using the low calorific fuel as $CO_2$-blended gas, it is identified that the cyclone jet hybrid combustor has the high performance of flame stability.

저 스월 버너에서의 난류 예혼합 부상화염장의 해석 (Numerical Modeling of Turbulent Premixed Lifted Flames in Low-Swirl Burner)

  • 강성모;이정원;김용모;정재화;안달홍
    • 한국연소학회지
    • /
    • 제12권3호
    • /
    • pp.8-15
    • /
    • 2007
  • This study has numerically modelled the combustion processes of the turbulent swirling premixed lifted flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially-injected air jets induce the turbulent swirling flow which plays the crucial role to stabilize the turbulent lifted flame. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flamelet model.. Two-dimensional and three-dimensional computations are made for the various swirl numbers and nozzle length. In terms of the centerline velocity profiles and flame liftoff heights, numerical results are compared with experimental data The three-dimensional approach yields the much better conformity with agreements with measurements without any analytic assumptions on the inlet swirl profiles, compared to the two-dimensional approach. Numerical clearly results indicate that the present level-set based flamelet approach has realistically simulated the. structure and stabilization mechanism of the turbulent swirling stoichiometric and lean-premixed lifted flames in the low-swirl burner.

  • PDF

저 스월 버너에서의 난류 예혼합 부상화염장의 해석 (Numerical Modeling of Turbulent Premixed Lifted Flames in Low-Swirl Burner)

  • 강성모;이정원;김용모;정재화;안달홍
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.455-458
    • /
    • 2006
  • This study has numerically modelled the combustion processes of the turbulent swirling premixed lifted flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially- injected air jets induce the turbulent swirling flow which plays the crucial role to stabilize the turbulent lifted flame. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flame let model. Two-dimensional and three-dimensional computations are made for the various swirl numbers and nozzle length. In terms of the centerline velocity profiles and flame liftoff heights, numerical results are compared with experimental data The three-dimensional approach yields the much better conformity with agreements with measurements without any analytic assumptions on the inlet swirl profiles, compared to the two-dimensional approach. Numerical clearly results indicate that the present level-set based flamelet approach has realistically simulated the structure and stabilization mechanism of the turbulent swirling stoichiometric and lean-premixed lifted flames in the low-swirl burner.

  • PDF