• Title/Summary/Keyword: lower-chamfer

Search Result 13, Processing Time 0.032 seconds

Experimental Study of Sloshing Load on LNG Tanks for Unrestricted Filling Operation

  • Kim, Sang-Yeob;Kim, Yonghwan;Park, Jong-Jin;Kim, Booki
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.41-52
    • /
    • 2017
  • This paper presents a numerical and experimental study of sloshing loads on liquefied natural gas (LNG) vessels. Conventional LNG carriers with membrane-type cargo systems have filling restrictions from 10% to 70% of tank height. The main reason for such restrictions is high sloshing loads around these filling depths. However, intermediate filling depths cannot be avoided for most LNG vessels except the LNG carrier. This study attempted to design a membrane-type LNG tank with a modified lower-chamfer shape that allows all filling operations. First, numerical sloshing analysis was carried out to find an efficient height of the lower-chamfer that can reduce sloshing pressure at partially filled conditions. The numerical sloshing analysis program SHI-SLOSH was used for numerical simulation; this program is based on SOLA-VOF. The effectiveness of the newly designed tanks was validated by 1:50-scale three-dimensional tank tests. A total of three different tanks were tested: a conventional tank and two modified tanks. As test conditions, various filling depths and wave periods were considered, and the same test conditions were applied to the three tanks. During the test, slosh-induced dynamic pressures were measured around the corners of the tank wall. The measured pressure data were post-processed and the pressures of the three different tanks were statistically compared in several ways. Experimental results show that the modified tanks were quite effective in reducing sloshing loads at low filling conditions. This study demonstrated the possibility of all filling operations for LNG cargo containment systems.

Controlling Horseshoe Vortex by the Leading-Edge Chamfer Groove in a Generic Wing-Body Junction (일반적인 블레이드 형상에서의 앞전 모서리 홈에 의한 말굽와류 제어)

  • Cho, Jong-Jae;Choe, Byeong-Ik;Kim, Jae-Min;Kim, Kui-Soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.185-191
    • /
    • 2008
  • The aerodynamic losses so attributed to the endwall - usually termed secondary flow losses or secondary losses - can be as high as 30$\sim$50% of the total aerodynamic losses in a blade or stator row. Inlet guide vanes, with lower total turning and higher convergence ratios, will have smaller secondary losses, amounting to as much as 20% of total loss for an inlet stator row. These are important part for improving a turbine efficiency. The present study deals with a leading edge chamfer groove on a wing-body to investigate the vortex generation and characteristics of a horseshoe vortex with the installed height, and depth of the groove. The current study is investigated with $FLUENT^{TM}$.

  • PDF

A Study on the Image Registration Algorithms for the Accurate Application of Multimodality Image in Radiation Treatment Planning (방사선치료 계획시 다중영상 활용의 정확도 향상을 위한 영상정합 알고리즘 분석)

  • 송주영;이형구;최보영;윤세철;서태석
    • Progress in Medical Physics
    • /
    • v.13 no.4
    • /
    • pp.209-217
    • /
    • 2002
  • There have been many studies on the application of the reciprocal advantages of multimodality image to define accurate target volume in the Process of radiation treatment planning. For the proper use of the multimodality images, the registration works between different modality images should be performed in advance. In this study, we selected chamfer matching method and mutual information method as most popular methods in recent image registration studies considering the registration accuracy and clinical practicality. And the two registration methods were analyzed to deduce the optimal registration method according to the characteristics of images. Lung phantom of which multimodality images could be acquired was fabricated and CT, MRI and SPECT images of the phantom were used in this study. We developed the registration program which can perform the two registration methods properly and analyzed the registration results which were produced by the developed program in many different images' conditions. Although the overall accuracy of the registration in both chamfer matching method and mutual information method was acceptable, the registration errors in SPECT images which had lower resolution and in degraded images of which data were removed in some part were increased when chamfer matching method was applied. Especially in the case of degraded reference image, chamfer matching methods produce relatively large errors compared with mutual information method. Mutual information method can be estimated as more robust registration method than chamfer matching method in this study because it did not need the prerequisite works, the extraction of accurate contour points, and it produced more accurate registration results consistently regardless of the images' characteristics. The analysis of the registration methods in this study can be expected to provide useful information to the utilization of multimodality images in delineating target volume for radiation treatment planning and in many other clinical applications.

  • PDF

3D Mesh Reconstruction Technique from Single Image using Deep Learning and Sphere Shape Transformation Method (딥러닝과 구체의 형태 변형 방법을 이용한 단일 이미지에서의 3D Mesh 재구축 기법)

  • Kim, Jeong-Yoon;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.160-168
    • /
    • 2022
  • In this paper, we propose a 3D mesh reconstruction method from a single image using deep learning and a sphere shape transformation method. The proposed method has the following originality that is different from the existing method. First, the position of the vertex of the sphere is modified to be very similar to the 3D point cloud of an object through a deep learning network, unlike the existing method of building edges or faces by connecting nearby points. Because 3D point cloud is used, less memory is required and faster operation is possible because only addition operation is performed between offset value at the vertices of the sphere. Second, the 3D mesh is reconstructed by covering the surface information of the sphere on the modified vertices. Even when the distance between the points of the 3D point cloud created by correcting the position of the vertices of the sphere is not constant, it already has the face information of the sphere called face information of the sphere, which indicates whether the points are connected or not, thereby preventing simplification or loss of expression. can do. In order to evaluate the objective reliability of the proposed method, the experiment was conducted in the same way as in the comparative papers using the ShapeNet dataset, which is an open standard dataset. As a result, the IoU value of the method proposed in this paper was 0.581, and the chamfer distance value was It was calculated as 0.212. The higher the IoU value and the lower the chamfer distance value, the better the results. Therefore, the efficiency of the 3D mesh reconstruction was demonstrated compared to the methods published in other papers.

Stress Analysis of Posterior Porcelain-Fused-to-Metal Crown by Marginal Configurations (구치부(臼齒部) 도재전장주조관(陶在前裝鑄造冠) 변연형태(邊緣形態)에 따른 응력분석(應力分析))

  • Kim, Kwang-Seok;Song, Kwang-Yup;Park, Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.25 no.1
    • /
    • pp.161-179
    • /
    • 1987
  • To study the mechanical behaviors of the margins of porcelain-fused-to-metal crown on the posterior teeth, 5 types of margins on the lower first molar were chosen, and then the finite element models were constructed. 50kg forces were applied to the porcelain on the axial wall supported by the metal vertically. The displacements and stresses of the porcelain-fused-to-metal crown were analyzed to investigate the influence of the type of margins. The results were as follows; 1. High tensile stresses were exhibited on the porcelain of the portion of the coronal line angle insufficient metallic support. 2. In case metal coping had a good supporting form to vertical force, uniform compressive stresses were exhibited on their supporting form. 3. Tensile stresses in the inframetallic margin on the series of the shoulder with a bevel margins were decreased in the bevel portion. 4. Principal stresses on the metal of the chamfer marginal portion were decreased comparing with the series of the shoulder margins. 5. The noticeable compressive stress gradients were exhibited between axial cement layer and metal on the series of the shoulder margins. 6. The principal stresses on the marginal cement layer were higher than that of the occlusal surface and axial wall.

  • PDF

Biomechanical three-dimensional finite element analysis of monolithic zirconia crown with different cement type

  • Ha, Seung-Ryong
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.6
    • /
    • pp.475-483
    • /
    • 2015
  • PURPOSE. The objective of this study was to evaluate the influence of various cement types on the stress distribution in monolithic zirconia crowns under maximum bite force using the finite element analysis. MATERIALS AND METHODS. The models of the prepared #46 crown (deep chamfer margin) were scanned and solid models composed of the monolithic zirconia crown, cement layer, and prepared tooth were produced using the computer-aided design technology and were subsequently translated into 3-dimensional finite element models. Four models were prepared according to different cement types (zinc phosphate, polycarboxylate, glass ionomer, and resin). A load of 700 N was applied vertically on the crowns (8 loading points). Maximum principal stress was determined. RESULTS. Zinc phosphate cement had a greater stress concentration in the cement layer, while polycarboxylate cement had a greater stress concentration on the distal surface of the monolithic zirconia crown and abutment tooth. Resin cement and glass ionomer cement showed similar patterns, but resin cement showed a lower stress distribution on the lingual and mesial surface of the cement layer. CONCLUSION. The test results indicate that the use of different luting agents that have various elastic moduli has an impact on the stress distribution of the monolithic zirconia crowns, cement layers, and abutment tooth. Resin cement is recommended for the luting agent of the monolithic zirconia crowns.

Evaluation on machining accuracy according to convergence angle and radius of curvature value used for fabricating custom abutments (맞춤형 지대주 제작에 사용되는 수렴 각과 곡률 반경의 값에 따른 가공 정확도 평가)

  • Hong, Min-Ho;Choi, Sung-Min;Kwon, Tae-Yub
    • Korean Journal of Dental Materials
    • /
    • v.44 no.4
    • /
    • pp.329-336
    • /
    • 2017
  • This study evaluates the machining accuracy of the custom abutment design according to the selected convergence angle and radius of curvature value in the CAD program. Ten custom abutments were designed based on dental CAD. And then, the fabricated custom abutment was scanned ten times using a contact scanner. The data of the scanned custom abutment was saved as "Test STL" file. The Geomagic studio software was used to superposition each exported as an "Test STL" file with the CAD-reference-model STL file (CRM) specified by the same name. In the experimental results, the A8 group (convergence angle $8^{\circ}$) showed lower error than the A4 group (convergence angle $4^{\circ}$) . In addition, the higher the radius of curvature, the less error in the top and chamfer regions of the custom abutment (p< 0.05). Overall, the convergence angle and radius of curvature value in the custom abutment design were found to affect the machining accuracy.

Comparison of the fit accuracy of zirconia-based prostheses generated by two CAD/CAM systems

  • Ha, Seok-Joon;Cho, Jin-Hyun
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.6
    • /
    • pp.439-448
    • /
    • 2016
  • PURPOSE. The purposes of this study are to evaluate the internal and marginal adaptation of two widely used CAD/CAM systems and to study the effect of porcelain press veneering process on the prosthesis adaptation. MATERIALS AND METHODS. Molar of a lower jaw typodont resin model was prepared by adjusting a 1.0 mm circumferential chamfer, an occlusal reduction of 2.0 mm, and a $5^{\circ}$ convergence angle and was duplicated as an abrasion-resistant master die. The monolithic crowns and copings were fabricated with two different CAD/CAM system-Ceramil and Zirkonzahn systems. Two kinds of non-destructive analysis methods are used in this study. First, weight technique was used to determine the overall fitting accuracy. And, to evaluate internal and marginal fit of specific part, replica technique procedures were performed. RESULTS. The silicone weight for the cement space of monolithic crowns and copings manufactured with Ceramil system was significantly higher than that from Zirkonzahn system. This gap might cause the differences in the silicone weight because the prostheses were manufactured according to the recommendation of each system. Marginal discrepancies of copings made with Ceramil system were between 106 and $117{\mu}m$ and those from Zirkonzahn system were between 111 and $115{\mu}m$. Marginal discrepancies of copings made with Ceramil system were between 101 and $131{\mu}m$ and those from Zirkonzahn system were between 116 and $131{\mu}m$. CONCLUSION. Marginal discrepancy was relatively lower in Ceramil system and internal gap was smaller in Zirkonzahn system. There were significant differences in the internal gap of monolithic crown and coping among the 2 CAD/CAM systems. Marginal discrepancy produced from the 2 CAD/CAM systems were within a reported clinically acceptable range of marginal discrepancy.

Photoelastic Stress Analysis of Proximal Margins in Dental Restorations (치관보철물(齒冠補綴物)의 인접변연부위(隣接邊緣部位)에 작용(作用)하는 Stress에 관(關)한 광탄성학적(光彈性學的) 분석(分析))

  • Lim, Chung-Kyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.18 no.1
    • /
    • pp.37-47
    • /
    • 1980
  • The purpose of this study was to investigate the stresses in different proximal margins and to measure, quantitatively, the effect of different modifications in the design of preparations on the stresses using two-dimensional photoelasticity. Photoelastic stress analysis is based on the phenomenon, exhibited by most transparent solids, of becoming birefringent, or doubly refracting, when strained. Two birefringent materials were used in this study, PSM-1 and PSM-5 in .standard sheet ($10'{\times}10'{\times}\frac{1}{4}'$ thickness), PSM-1(polyester) was used for constructing the substructure, and PSM-5(epoxy resin) was used in making the restorations to be investigated. Two birefringent materials were used in the construction of composite photoelastic model. Seven variable models were constructed. The peripheral dimensions of all model were constant and the models represent an occlusomesial section of a lower posterior molar. Model 1 represents the knife edge margin (shoulderless), Model 2 represents the chamfer, Model 3 represents a rounded shoulder(no sharp angle between the axial wall and gingival floor), Model 4 represents a flat shoulder (axial wall is a $90^{\circ}$ angle to the gingival wall), Model 5 represents $+15^{\circ}$ angulation, Model 6 has a $-15^{\circ}$ angulation, and Model 7 is the same as Model 4 except that it has a $45^{\circ}$ bevel. Improved artificial stone was used to represent dental cement in luting the composite photoelastic model. Static loading procedures(100 pounds) were used at preplanned sites. The results were as follows; 1. The stresses in the proximal portion of all tested models were compressive in nature when the proximal shoulders were loaded vertically on the same proximal marginal ridge. 2. The round and chamfered preparations were the optimum designs in proximoocclusal restorations. They showed the lowest stress concentration factor, i.e. 2.16 and 2.23, respectively. The knife edged shoulder had the highest value, K=5.39. Round type shoulder geometry experiments reduced the stress concentration factor (S.C.F.) 3. The gingival portion of proximal shoulder geometry was a critical location for stress concentration.

  • PDF

The Effect of Temporary Cement Cleaning Methods on the Retentive Strength of Cementation Type Implant Prostheses (임시 시멘트 제거방법이 시멘트 유지형 임플란트 보철물의 유지력에 미치는 영향)

  • Shin, Hwang-Kyu;Song, Young-Gyun;Shin, Soo-Yeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.2
    • /
    • pp.125-140
    • /
    • 2011
  • The remnant of temporary cement on the intaglio surface of cast restoration may have a negative effect on the retentive strength of permanent cement. This study was to evaluate the effect of temporary cement cleaning methods on the retentive strength of cementation type implant prostheses. Prefabricated implant abutments - height 5.5mm, diameter 4.5mm, 6 degree axial wall taper with chamfer margins were used. Forty copings-abutment specimens were divided into four groups(each n=10) according to the cleaning methods for temporary cement(Temp-$Bond^{(R)}$) as follows : no temporary cementation(the control group), orange solvent, ultrasonic cleaning, air borne-particle abrasion. After the application of temporary cement and the separation, the cleaning procedure was performed according to the protocol of each group. The specimens were cemented with $Premier^{(R)}$ Implant $Cement^{TM}$. After the permanent cementation, the specimens were subjected to thermocycling and pulled out from the specimens with a universal testing machine at a cross-head speed of 0.5mm/min. After the retentive strength test, all the specimens were cleaned using ultrasonic cleaning, abraded with air borne-particles, and steam-cleaned. Likewise, the specimens were temporarily cemented(Temp-$Bond^{(R)}$ NE), cleaned according to the protocol of each group, cemented with $Premier^{(R)}$ Implant $Cement^{TM}$ and subjected to thermocycling and measurement of their retentive strength. The mean of group with orange solvent were significantly lower than those of other groups(p<0.05). There was no significance between group with ultrasonic cleaning and group with air borne-particle abrasion. Group with ultrasonic cleaning and group with air-particle abrasion were no significance at control group. There was no significance between group cemented with Temp-$Bond^{(R)}$ and group cemented with Temp-$Bond^{(R)}$ NE. Within the limitation of this study, it can be concluded that the temporary cement cleaning method with only orange solvent may have a negative effect on the retentive strength of permanent cement. Ultrasonic cleaning and air borne-particle abrasion methods are recommended for the temporary cement cleaning method on cementation type implant prostheses.