• Title/Summary/Keyword: mRNA

Search Result 7,001, Processing Time 0.035 seconds

Exploring Cancer-Specific microRNA-mRNA Interactions by Evolutionary Layered Hypernetwork Models (진화연산 기반 계층적 하이퍼네트워크 모델에 의한 암 특이적 microRNA-mRNA 상호작용 탐색)

  • Kim, Soo-Jin;Ha, Jung-Woo;Zhang, Byoung-Tak
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.10
    • /
    • pp.980-984
    • /
    • 2010
  • Exploring microRNA (miRNA) and mRNA regulatory interactions may give new insights into diverse biological phenomena. Recently, miRNAs have been discovered as important regulators that play a major role in various cellular processes. Therefore, it is essential to identify functional interactions between miRNAs and mRNAs for understanding the context- dependent activities of miRNAs in complex biological systems. While elucidating complex miRNA-mRNA interactions has been studied with experimental and computational approaches, it is still difficult to infer miRNA-mRNA regulatory modules. Here we present a novel method, termed layered hypernetworks (LHNs), for identifying functional miRNA-mRNA interactions from heterogeneous expression data. In experiments, we apply the LHN model to miRNA and mRNA expression profiles on multiple cancers. The proposed method identifies cancer-specific miRNA-mRNA interactions. We show the biological significance of the discovered miRNA- mRNA interactions.

Biosynthesis of messenger RNA in aspergillus phoenicis during thier life cycle (Aspergillus phoenicis의 생활사를 통한 mRNA의 생합성)

  • 김봉수;이영록
    • Korean Journal of Microbiology
    • /
    • v.26 no.1
    • /
    • pp.27-31
    • /
    • 1988
  • Biosynthesis and processing of cytoplasmic mRNA from heterogenous nuclear RNA (hn-RNA) in Aspergillus phoenicis were studied by $^{3}H$-uridine labeling and synchronous culture techniques during their life cycle. Incorporations of $^{3}H$-uridine into hn-RNA and mRNA were most rapid in vesicle-phialide fromation stage and diminished in hyphal growth stage. The processing of cytoplasmic mRNA from hn-RNA was proceeded more rapidly in hyphal growth and conidiophore formation stages than in conidia and vesicle-phialide formation stages. The specific radioactivities of hn-RNA and mRNA were very high in vesicle-phialide formation stage.

  • PDF

HisCoM-mimi: software for hierarchical structural component analysis for miRNA-mRNA integration model for binary phenotypes

  • Kim, Yongkang;Park, Taesung
    • Genomics & Informatics
    • /
    • v.17 no.1
    • /
    • pp.10.1-10.3
    • /
    • 2019
  • To identify miRNA-mRNA interaction pairs associated with binary phenotypes, we propose a hierarchical structural component model for miRNA-mRNA integration (HisCoM-mimi). Information on known mRNA targets provided by TargetScan is used to perform HisCoM-mimi. However, multiple databases can be used to find miRNA-mRNA signatures with known biological information through different algorithms. To take these additional databases into account, we present our advanced application software for HisCoM-mimi for binary phenotypes. The proposed HisCoM-mimi supports both TargetScan and miRTarBase, which provides manually-verified information initially gathered by text-mining the literature. By integrating information from miRTarBase into HisCoM-mimi, a broad range of target information derived from the research literature can be analyzed. Another improvement of the new HisCoM-mimi approach is the inclusion of updated algorithms to provide the lasso and elastic-net penalties for users who want to fit a model with a smaller number of selected miRNAs and mRNAs. We expect that our HisCoM-mimi software will make advanced methods accessible to researchers who want to identify miRNA-mRNA interaction pairs related with binary phenotypes.

RNase P-dependent Cleavage of Polycistronic mRNAs within Their Downstream Coding Regions in Escherichia coli

  • Lee, Jung-Min;Kim, Yool;Hong, Soon-Kang;Lee, Young-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.1137-1140
    • /
    • 2008
  • M1 RNA, the catalytic subunit of Escherichia coli RNase P, is an essential ribozyme that processes the 5' leader sequence of tRNA precursors (ptRNAs). Using KS2003, an E. coli strain generating only low levels of M1 RNA, which showed growth defects, we examined whether M1 RNA is involved in polycistronic mRNA processing or degradation. Microarray analysis of total RNA from KS2003 revealed six polycistronic operon mRNAs (acpP-fabF, cysDNC, flgAMN, lepAB, phoPQ, and puuCBE) showing large differences in expression between the adjacent genes in the same mRNA transcript compared with the KS2001 wild type strain. Model substrates spanning an adjacent pair of genes for each polycistronic mRNA were tested for RNase P cleavage in vitro. Five model RNAs (cysNC, flgMN, lepAB, phoPQ, and puuBE) were cleaved by RNase P holoenzyme but not by M1 RNA alone. However, the cleavages occurred at non-ptRNA-like cleavage sites, with much less efficiency than the cleavage of ptRNA. Since cleavage products generated by RNase P from a polycistronic mRNA can have different in vivo stabilities, our results suggest that RNase P cleavage may lead to differential expression of each cistron.

Genetic Analysis of Fission Yeast rsm1 Which is Involved in mRNA Export (분열효모에서 mRNA Export와 관련된 rgm1 유전자의 유전학적 분석)

  • Kang, Su-Ky;Yoon, Jin-Ho
    • Korean Journal of Microbiology
    • /
    • v.44 no.2
    • /
    • pp.98-104
    • /
    • 2008
  • We constructed the null mutants of fission yeast Schizosaccharomyces pombe rsml gene that is thought to be involved in mRNA export. Though rsm1 gene is not essential for growth, the null mutant strain constructed by replacing the rsm1-coding region with an $kan^{r}$ gene showed growth retardation and mRNA export defects compared to wild type strain. We constructed double mutants which harbor rsm1 null allele and mutant allele of genes involved in mRNA export. The mex67 or npp106 null allele, when combined with rsm1 null allele, showed an additive effect on growth retardation and mRNA export defects. On the other hand, the thp1 null allele restored the defects of growth and mRNA export of rsm1 null mutant. These results suggest that rsm1 plays a role in mRNA export from the nucleus.

A new function of glucocorticoid receptor: regulation of mRNA stability

  • Park, Ok Hyun;Do, Eunjin;Kim, Yoon Ki
    • BMB Reports
    • /
    • v.48 no.7
    • /
    • pp.367-368
    • /
    • 2015
  • It has long been thought that glucocorticoid receptor (GR) functions as a DNA-binding transcription factor in response to its ligand (a glucocorticoid) and thus regulates various cellular and physiological processes. It is also known that GR can bind not only to DNA but also to mRNA; this observation points to the possible role of GR in mRNA metabolism. Recent data revealed a molecular mechanism by which binding of GR to target mRNA elicits rapid mRNA degradation. GR binds to specific RNA sequences regardless of the presence of a ligand. In the presence of a ligand, however, the mRNA-associated GR can recruit PNRC2 and UPF1, both of which are specific factors involved in nonsense-mediated mRNA decay (NMD). PNRC2 then recruits the decapping complex, consequently promoting mRNA degradation. This mode of mRNA decay is termed "GR-mediated mRNA decay" (GMD). Further research demonstrated that GMD plays a critical role in chemotaxis of immune cells by targeting CCL2 mRNA. All these observations provide molecular insights into a previously unappreciated function of GR in posttranscriptional regulation of gene expression. [BMB Reports 2015; 48(7): 367-368]

Development of web-based system for miRNA and mRNA integrated analysis (miRNA 와 mRNA 통합 분석을 위한 웹 기반 시스템 개발)

  • Kim, Da-Yeon;Ko, Younhee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.690-692
    • /
    • 2022
  • 기존의 질병 관련 연구들은 대부분 유의미하게 변화되는 유전자들을 찾아내고(Differentially Expressed Genes, DEGs), 이들이 연관된 생물학적 패스웨이(biological pathway)를 찾아내는 방향으로 이루어졌다. 더불어 miRNA(microRNA)가 많은 mRNA 의 발현을 조절하며, 실제 면역, 대사 및 세포 사멸을 포함한 여러 필수 생리학적 및 질병에 매우 중요한 역할을 한다고 밝혀지며, 바이오 마커로써의 miRNA 를 찾아내고자 하는 연구가 활발히 진행되기 시작하였다. 하지만 mRNA 나 miRNA 의 독립적인 연구만으로는 명확한 질병과의 연관성이나 기능을 이해하기에는 어려움이 있다. 따라서 본 연구에서는 질병 상태에서 유의미하게 변화되는 miRNA 와 이러한 miRNA 에 의해 조절되는 mRNA 를 함께 고려하여 분석함으로써, 실제 질병의 발병 원인이 되는 생물학적 패스웨이나 메커니즘을 밝히고자 하였다. 또한, miRNA 와 mRNA 의 연관성을 찾기 위해, PPI(protein-protein interaction) 네트워크에 기반을 둔 RWR(Random Walk with Restart Algorithm)를 적용하여, 직접적 연관성뿐 아니라, 유전자 간의 숨겨진 간접적인 패스웨이를 고려하여 분석하기 위한 웹 기반 시스템을 개발하였다. 이 시스템은 mRNA-miRNA 를 함께 고려한 통합 분석을 통해 숨겨진 질병의 메커니즘을 이해하고 치료 방법을 찾아내는 데 크게 공헌할 것이다.

Development of mRNA Vaccines/Therapeutics and Their Delivery System

  • Sora Son;Kyuri Lee
    • Molecules and Cells
    • /
    • v.46 no.1
    • /
    • pp.41-47
    • /
    • 2023
  • The rapid development of mRNA vaccines has contributed to the management of the current coronavirus disease 2019 (COVID-19) pandemic, suggesting that this technology may be used to manage future outbreaks of infectious diseases. Because the antigens targeted by mRNA vaccines can be easily altered by simply changing the sequence present in the coding region of mRNA structures, it is more appropriate to develop vaccines, especially during rapidly developing outbreaks of infectious diseases. In addition to allowing rapid development, mRNA vaccines have great potential in inducing successful antigen-specific immunity by expressing target antigens in cells and simultaneously triggering immune responses. Indeed, the two COVID-19 mRNA vaccines approved by the U.S. Food and Drug Administration have shown significant efficacy in preventing infections. The ability of mRNAs to produce target proteins that are defective in specific diseases has enabled the development of options to treat intractable diseases. Clinical applications of mRNA vaccines/therapeutics require strategies to safely deliver the RNA molecules into targeted cells. The present review summarizes current knowledge about mRNA vaccines/ therapeutics, their clinical applications, and their delivery strategies.

Examining the Gm18 and $m^1G$ Modification Positions in tRNA Sequences

  • Subramanian, Mayavan;Srinivasan, Thangavelu;Sudarsanam, Dorairaj
    • Genomics & Informatics
    • /
    • v.12 no.2
    • /
    • pp.71-75
    • /
    • 2014
  • The tRNA structure contains conserved modifications that are responsible for its stability and are involved in the initiation and accuracy of the translation process. tRNA modification enzymes are prevalent in bacteria, archaea, and eukaryotes. tRNA Gm18 methyltransferase (TrmH) and tRNA $m^1G37$ methyltransferase (TrmD) are prevalent and essential enzymes in bacterial populations. TrmH involves itself in methylation process at the 2'-OH group of ribose at the 18th position of guanosine (G) in tRNAs. TrmD methylates the G residue next to the anticodon in selected tRNA subsets. Initially, $m^1G37$ modification was reported to take place on three conserved tRNA subsets ($tRNA^{Arg}$, $tRNA^{Leu}$, $tRNA^{Pro}$); later on, few archaea and eukaryotes organisms revealed that other tRNAs also have the $m^1G37$ modification. The present study reveals Gm18, $m^1G37$ modification, and positions of $m^1G$ that take place next to the anticodon in tRNA sequences. We selected extremophile organisms and attempted to retrieve the $m^1G$ and Gm18 modification bases in tRNA sequences. Results showed that the Gm18 modification G residue occurs in all tRNA subsets except three tRNAs ($tRNA^{Met}$, $tRNA^{Pro}$, $tRNA^{Val}$). Whereas the $m^1G37$ modification base G is formed only on $tRNA^{Arg}$, $tRNA^{Leu}$, $tRNA^{Pro}$, and $tRNA^{His}$, the rest of the tRNAs contain adenine (A) next to the anticodon. Thus, we hypothesize that Gm18 modification and $m^1G$ modification occur irrespective of a G residue in tRNAs.

Effects of spTho1 Deletion and Over-Expression on mRNA Export in Fission Yeast (분열효모에서 spTho1 유전자의 결실과 과발현이 생장 및 mRNA Export에 미치는 영향)

  • Cho, Ye-Seul;Yoon, Jin-Ho
    • Korean Journal of Microbiology
    • /
    • v.46 no.4
    • /
    • pp.401-404
    • /
    • 2010
  • Tho1 is a RNA-binding protein that assembles co-transcriptionally onto the nascent mRNA and is thought to be involved in mRNP biogenesis and mature mRNA export to cytoplasm in budding yeast. In fission yeast Schizosaccharomyces pombe, a homologue of THO1 (spTho1) was identified based on sequence alignment. A deletion mutant in a diploid strain was constructed by replacing one of spTho1-coding region with an ura4+ gene using one-step gene disruption method. Tetrad analysis showed that the spTho1 was not essential for growth. The spTho1 mutant did not show any defects of bulk mRNA export. However, over-expression of spTho1 from strong nmt1 promoter caused the growth defects and accumulation of poly(A)$^+$ RNA in the nucleus. These results suggest that spTho1 is involved in mRNA export from the nucleus to cytoplasm though it is not essential.