• Title/Summary/Keyword: machine learning

Search Result 5,173, Processing Time 0.032 seconds

Radionuclide identification based on energy-weighted algorithm and machine learning applied to a multi-array plastic scintillator

  • Hyun Cheol Lee ;Bon Tack Koo ;Ju Young Jeon ;Bo-Wi Cheon ;Do Hyeon Yoo ;Heejun Chung;Chul Hee Min
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3907-3912
    • /
    • 2023
  • Radiation portal monitors (RPMs) installed at airports and harbors to prevent illicit trafficking of radioactive materials generally use large plastic scintillators. However, their energy resolution is poor and radionuclide identification is nearly unfeasible. In this study, to improve isotope identification, a RPM system based on a multi-array plastic scintillator and convolutional neural network (CNN) was evaluated by measuring the spectra of radioactive sources. A multi-array plastic scintillator comprising an assembly of 14 hexagonal scintillators was fabricated within an area of 50 × 100 cm2. The energy spectra of 137Cs, 60Co, 226Ra, and 4K (KCl) were measured at speeds of 10-30 km/h, respectively, and an energy-weighted algorithm was applied. For the CNN, 700 and 300 spectral images were used as training and testing images, respectively. Compared to the conventional plastic scintillator, the multi-arrayed detector showed a high collection probability of the optical photons generated inside. A Compton maximum peak was observed for four moving radiation sources, and the CNN-based classification results showed that at least 70% was discriminated. Under the speed condition, the spectral fluctuations were higher than those under dwelling condition. However, the machine learning results demonstrated that a considerably high level of nuclide discrimination was possible under source movement conditions.

Predictive Models for the Tourism and Accommodation Industry in the Era of Smart Tourism: Focusing on the COVID-19 Pandemic (스마트관광 시대의 관광숙박업 영업 예측 모형: 코로나19 팬더믹을 중심으로)

  • Yu Jin Jo;Cha Mi Kim;Seung Yeon Son;Mi Jin Noh
    • Smart Media Journal
    • /
    • v.12 no.8
    • /
    • pp.18-25
    • /
    • 2023
  • The COVID-19 outbreak in 2020 caused continuous damage worldwode, especially the smart tourism industry was hit directly by the blockade of sky roads and restriction of going out. At a time when overseas travel and domestic travel have decreased significantly, the number of tourist hotels that are colsed and closed due to the continued deficit is increasing. Therefore, in this study, licensing data from the Ministry of Public Administraion and Security were collected and visualized to understand the operation status of the tourism and lodging industry. The machine learning classification algorithm was applied to implement the business status prediction model of the tourist hotel, the performance of the prediction model was optimized using the ensemble algorithm, and the performance of the model was evaluated through 5-Fold cross-validation. It was predicted that the survival rate of tourist hotels would decrease somewhat, but the actual survival rate was analyzed to be no different from before COVID-19. Through the prediction of the business status of the hotel industry in this paper, it can be used as a basis for grasping the operability and development trends of the entire tourism and lodging industry.

Battery thermal runaway cell detection using DBSCAN and statistical validation algorithms (DBSCAN과 통계적 검증 알고리즘을 사용한 배터리 열폭주 셀 탐지)

  • Jingeun Kim;Yourim Yoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.569-582
    • /
    • 2023
  • Lead-acid Battery is the oldest rechargeable battery system and has maintained its position in the rechargeable battery field. The battery causes thermal runaway for various reasons, which can lead to major accidents. Therefore, preventing thermal runaway is a key part of the battery management system. Recently, research is underway to categorize thermal runaway battery cells into machine learning. In this paper, we present a thermal runaway hazard cell detection and verification algorithm using DBSCAN and statistical method. An experiment was conducted to classify thermal runaway hazard cells using only the resistance values as measured by the Battery Management System (BMS). The results demonstrated the efficacy of the proposed algorithms in accurately classifying thermal runaway cells. Furthermore, the proposed algorithm was able to classify thermal runaway cells between thermal runaway hazard cells and cells containing noise. Additionally, the thermal runaway hazard cells were early detected through the optimization of DBSCAN parameters using a grid search approach.

Predicting the Baltic Dry Bulk Freight Index Using an Ensemble Neural Network Model (통합적인 인공 신경망 모델을 이용한 발틱운임지수 예측)

  • SU MIAO
    • Korea Trade Review
    • /
    • v.48 no.2
    • /
    • pp.27-43
    • /
    • 2023
  • The maritime industry is playing an increasingly vital part in global economic expansion. Specifically, the Baltic Dry Index is highly correlated with global commodity prices. Hence, the importance of BDI prediction research increases. But, since the global situation has become more volatile, it has become methodologically more difficult to predict the BDI accurately. This paper proposes an integrated machine-learning strategy for accurately forecasting BDI trends. This study combines the benefits of a convolutional neural network (CNN) and long short-term memory neural network (LSTM) for research on prediction. We collected daily BDI data for over 27 years for model fitting. The research findings indicate that CNN successfully extracts BDI data features. On this basis, LSTM predicts BDI accurately. Model R2 attains 94.7 percent. Our research offers a novel, machine-learning-integrated approach to the field of shipping economic indicators research. In addition, this study provides a foundation for risk management decision-making in the fields of shipping institutions and financial investment.

An AutoML-driven Antenna Performance Prediction Model in the Autonomous Driving Radar Manufacturing Process

  • So-Hyang Bak;Kwanghoon Pio Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3330-3344
    • /
    • 2023
  • This paper proposes an antenna performance prediction model in the autonomous driving radar manufacturing process. Our research work is based upon a challenge dataset, Driving Radar Manufacturing Process Dataset, and a typical AutoML machine learning workflow engine, Pycaret open-source Python library. Note that the dataset contains the total 70 data-items, out of which 54 used as input features and 16 used as output features, and the dataset is properly built into resolving the multi-output regression problem. During the data regression analysis and preprocessing phase, we identified several input features having similar correlations and so detached some of those input features, which may become a serious cause of the multicollinearity problem that affect the overall model performance. In the training phase, we train each of output-feature regression models by using the AutoML approach. Next, we selected the top 5 models showing the higher performances in the AutoML result reports and applied the ensemble method so as for the selected models' performances to be improved. In performing the experimental performance evaluation of the regression prediction model, we particularly used two metrics, MAE and RMSE, and the results of which were 0.6928 and 1.2065, respectively. Additionally, we carried out a series of experiments to verify the proposed model's performance by comparing with other existing models' performances. In conclusion, we enhance accuracy for safer autonomous vehicles, reduces manufacturing costs through AutoML-Pycaret and machine learning ensembled model, and prevents the production of faulty radar systems, conserving resources. Ultimately, the proposed model holds significant promise not only for antenna performance but also for improving manufacturing quality and advancing radar systems in autonomous vehicles.

A comparison of ATR-FTIR and Raman spectroscopy for the non-destructive examination of terpenoids in medicinal plants essential oils

  • Rahul Joshi;Sushma Kholiya;Himanshu Pandey;Ritu Joshi;Omia Emmanuel;Ameeta Tewari;Taehyun Kim;Byoung-Kwan Cho
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.675-696
    • /
    • 2023
  • Terpenoids, also referred to as terpenes, are a large family of naturally occurring chemical compounds present in the essential oils extracted from medicinal plants. In this study, a nondestructive methodology was created by combining ATR-FT-IR (attenuated total reflectance-Fourier transform infrared), and Raman spectroscopy for the terpenoids assessment in medicinal plants essential oils from ten different geographical locations. Partial least squares regression (PLSR) and support vector regression (SVR) were used as machine learning methodologies. However, a deep learning based model called as one-dimensional convolutional neural network (1D CNN) were also developed for models comparison. With a correlation coefficient (R2) of 0.999 and a lowest RMSEP (root mean squared error of prediction) of 0.006% for the prediction datasets, the SVR model created for FT-IR spectral data outperformed both the PLSR and 1 D CNN models. On the other hand, for the classification of essential oils derived from plants collected from various geographical regions, the created SVM (support vector machine) classification model for Raman spectroscopic data obtained an overall classification accuracy of 0.997% which was superior than the FT-IR (0.986%) data. Based on the results we propose that FT-IR spectroscopy, when coupled with the SVR model, has a significant potential for the non-destructive identification of terpenoids in essential oils compared with destructive chemical analysis methods.

An advanced machine learning technique to predict compressive strength of green concrete incorporating waste foundry sand

  • Danial Jahed Armaghani;Haleh Rasekh;Panagiotis G. Asteris
    • Computers and Concrete
    • /
    • v.33 no.1
    • /
    • pp.77-90
    • /
    • 2024
  • Waste foundry sand (WFS) is the waste product that cause environmental hazards. WFS can be used as a partial replacement of cement or fine aggregates in concrete. A database comprising 234 compressive strength tests of concrete fabricated with WFS is used. To construct the machine learning-based prediction models, the water-to-cement ratio, WFS replacement percentage, WFS-to-cement content ratio, and fineness modulus of WFS were considered as the model's inputs, and the compressive strength of concrete is set as the model's output. A base extreme gradient boosting (XGBoost) model together with two hybrid XGBoost models mixed with the tunicate swarm algorithm (TSA) and the salp swarm algorithm (SSA) were applied. The role of TSA and SSA is to identify the optimum values of XGBoost hyperparameters to obtain the higher performance. The results of these hybrid techniques were compared with the results of the base XGBoost model in order to investigate and justify the implementation of optimisation algorithms. The results showed that the hybrid XGBoost models are faster and more accurate compared to the base XGBoost technique. The XGBoost-SSA model shows superior performance compared to previously published works in the literature, offering a reduced system error rate. Although the WFS-to-cement ratio is significant, the WFS replacement percentage has a smaller influence on the compressive strength of concrete. To improve the compressive strength of concrete fabricated with WFS, the simultaneous consideration of the water-to-cement ratio and fineness modulus of WFS is recommended.

A Study on Trend Using Time Series Data (시계열 데이터 활용에 관한 동향 연구)

  • Shin-Hyeong Choi
    • Advanced Industrial SCIence
    • /
    • v.3 no.1
    • /
    • pp.17-22
    • /
    • 2024
  • History, which began with the emergence of mankind, has a means of recording. Today, we can check the past through data. Generated data may only be generated and stored at a certain moment, but it is not only continuously generated over a certain time interval from the past to the present, but also occurs in the future, so making predictions using it is an important task. In order to find out trends in the use of time series data among numerous data, this paper analyzes the concept of time series data, analyzes Recurrent Neural Network and Long-Short Term Memory, which are mainly used for time series data analysis in the machine learning field, and analyzes the use of these models. Through case studies, it was confirmed that it is being used in various fields such as medical diagnosis, stock price analysis, and climate prediction, and is showing high predictive results. Based on this, we will explore ways to utilize it in the future.

Classification of Characteristics in Two-Wheeler Accidents Using Clustering Techniques (클러스터링 기법을 이용한 이륜차 사고의 특징 분류)

  • Heo, Won-Jin;Kang, Jin-ho;Lee, So-hyun
    • Knowledge Management Research
    • /
    • v.25 no.1
    • /
    • pp.217-233
    • /
    • 2024
  • The demand for two-wheelers has increased in recent years, driven by the growing delivery culture, which has also led to a rise in the number of two-wheelers. Although two-wheelers are economically efficient in congested traffic conditions, reckless driving and ambiguous traffic laws for two-wheelers have turned two-wheeler accidents into a significant social issue. Given the high fatality rate associated with two-wheelers, the severity and risk of two-wheeler accidents are considerable. It is, therefore, crucial to thoroughly understand the characteristics of two-wheeler accidents by analyzing their attributes. In this study, the characteristics of two-wheeled vehicle accidents were categorized using the K-prototypes algorithm, based on data from two-wheeled vehicle accidents. As a result, the accidents were divided into four clusters according to their characteristics. Each cluster showed distinct traits in terms of the roads where accidents occurred, the major laws violated, the types of accidents, and the times of accident occurrences. By tailoring enforcement methods and regulations to the specific characteristics of each type of accident, we can reduce the incidence of accidents involving two-wheelers in metropolitan areas, thereby enhancing road safety. Furthermore, by applying machine learning techniques to urban transportation and safety, this study adds to the body of related literature.

Forecasting the Business Performance of Restaurants on Social Commerce

  • Supamit BOONTA;Kanjana HINTHAW
    • Journal of Distribution Science
    • /
    • v.22 no.4
    • /
    • pp.11-22
    • /
    • 2024
  • Purpose: This research delves into the various factors that influence the performance of restaurant businesses on social commerce platforms in Bangkok, Thailand. The study considers both internal and external factors, including but not limited to business characteristics and location. Moreover, this research also analyzes the effects of employing multiple social commerce platforms on business efficiency and explores the underlying reasons for such effects. Research design, data, and methodology: Restaurants can be classified into different price ranges: low, medium, and high. To further investigate, we employed natural language processing AI to analyze online reviews and evaluate algorithm performance using machine learning techniques. We aimed to develop a model to gauge customer satisfaction with restaurants across different price categories effectively. Results: According to the research findings, several factors significantly impact restaurant groups in the low and mid-price ranges. Among these factors are population density and the number of seats at the restaurant. On the other hand, in the mid-and high-price ranges, the price levels of the food and drinks offered by the restaurant play a crucial role in determining customer satisfaction. Furthermore, the correlation between different social commerce platforms can significantly affect the business performance of high-price range restaurant groups. Finally, the level of online review sentiment has been found to influence customer decision-making across all restaurant types significantly. Conclusions: The study emphasizes that restaurants' characteristics based on their price level differ significantly, and social commerce platforms have the potential to affect one another. It is worth noting that the sentiment expressed in online reviews has a more significant impact on customer decision-making than any other factor, regardless of the type of restaurant in question.