• 제목/요약/키워드: machine learning

검색결과 5,177건 처리시간 0.032초

머신러닝 기법 기반의 예측조합 방법을 활용한 산업 부가가치율 예측 연구 (Prediction on the Ratio of Added Value in Industry Using Forecasting Combination based on Machine Learning Method)

  • 김정우
    • 한국콘텐츠학회논문지
    • /
    • 제20권12호
    • /
    • pp.49-57
    • /
    • 2020
  • 본 연구는 우리나라 수출 분야 산업의 경쟁력을 나타내는 부가가치율을 다양한 머신러닝 기법을 활용하여 예측하였다. 아울러, 예측의 정확성 및 안정성을 높이기 위하여 머신러닝 기법 예측값들에 예측조합 기법을 적용하였다. 특히, 본 연구는 산업별 부가가치율에 영향을 주는 다양한 변수를 고려하기 위하여 재귀적특성제거 방법을 사용하여 주요 변수를 선별한 후 머신러닝 기법에 적용함으로써 예측과정의 효율성을 높였다. 분석결과, 예측조합 방법에 따른 예측값은 머신러닝 기법 예측값들보다 실제의 산업 부가가치율에 근접한 것으로 나타났다. 또한, 머신러닝 기법의 예측값들이 큰 변동성을 보이는 것과 달리 예측조합 기법은 안정적인 예측값을 나타내었다.

Adversarial Machine Learning: A Survey on the Influence Axis

  • Alzahrani, Shahad;Almalki, Taghreed;Alsuwat, Hatim;Alsuwat, Emad
    • International Journal of Computer Science & Network Security
    • /
    • 제22권5호
    • /
    • pp.193-203
    • /
    • 2022
  • After the everyday use of systems and applications of artificial intelligence in our world. Consequently, machine learning technologies have become characterized by exceptional capabilities and unique and distinguished performance in many areas. However, these applications and systems are vulnerable to adversaries who can be a reason to confer the wrong classification by introducing distorted samples. Precisely, it has been perceived that adversarial examples designed throughout the training and test phases can include industrious Ruin the performance of the machine learning. This paper provides a comprehensive review of the recent research on adversarial machine learning. It's also worth noting that the paper only examines recent techniques that were released between 2018 and 2021. The diverse systems models have been investigated and discussed regarding the type of attacks, and some possible security suggestions for these attacks to highlight the risks of adversarial machine learning.

Improved ensemble machine learning framework for seismic fragility analysis of concrete shear wall system

  • Sangwoo Lee;Shinyoung Kwag;Bu-seog Ju
    • Computers and Concrete
    • /
    • 제32권3호
    • /
    • pp.313-326
    • /
    • 2023
  • The seismic safety of the shear wall structure can be assessed through seismic fragility analysis, which requires high computational costs in estimating seismic demands. Accordingly, machine learning methods have been applied to such fragility analyses in recent years to reduce the numerical analysis cost, but it still remains a challenging task. Therefore, this study uses the ensemble machine learning method to present an improved framework for developing a more accurate seismic demand model than the existing ones. To this end, a rank-based selection method that enables determining an excellent model among several single machine learning models is presented. In addition, an index that can evaluate the degree of overfitting/underfitting of each model for the selection of an excellent single model is suggested. Furthermore, based on the selected single machine learning model, we propose a method to derive a more accurate ensemble model based on the bagging method. As a result, the seismic demand model for which the proposed framework is applied shows about 3-17% better prediction performance than the existing single machine learning models. Finally, the seismic fragility obtained from the proposed framework shows better accuracy than the existing fragility methods.

An insight into the prediction of mechanical properties of concrete using machine learning techniques

  • Neeraj Kumar Shukla;Aman Garg;Javed Bhutto;Mona Aggarwal;M.Ramkumar Raja;Hany S. Hussein;T.M. Yunus Khan;Pooja Sabherwal
    • Computers and Concrete
    • /
    • 제32권3호
    • /
    • pp.263-286
    • /
    • 2023
  • Experimenting with concrete to determine its compressive and tensile strengths is a laborious and time-consuming operation that requires a lot of attention to detail. Researchers from all around the world have spent the better part of the last several decades attempting to use machine learning algorithms to make accurate predictions about the technical qualities of various kinds of concrete. The research that is currently available on estimating the strength of concrete draws attention to the applicability and precision of the various machine learning techniques. This article provides a summary of the research that has previously been conducted on estimating the strength of concrete by making use of a variety of different machine learning methods. In this work, a classification of the existing body of research literature is presented, with the classification being based on the machine learning technique used by the researchers. The present review work will open the horizon for the researchers working on the machine learning based prediction of the compressive strength of concrete by providing the recommendations and benefits and drawbacks associated with each model as determining the compressive strength of concrete practically is a laborious and time-consuming task.

Android Malware Detection using Machine Learning Techniques KNN-SVM, DBN and GRU

  • Sk Heena Kauser;V.Maria Anu
    • International Journal of Computer Science & Network Security
    • /
    • 제23권7호
    • /
    • pp.202-209
    • /
    • 2023
  • Android malware is now on the rise, because of the rising interest in the Android operating system. Machine learning models may be used to classify unknown Android malware utilizing characteristics gathered from the dynamic and static analysis of an Android applications. Anti-virus software simply searches for the signs of the virus instance in a specific programme to detect it while scanning. Anti-virus software that competes with it keeps these in large databases and examines each file for all existing virus and malware signatures. The proposed model aims to provide a machine learning method that depend on the malware detection method for Android inability to detect malware apps and improve phone users' security and privacy. This system tracks numerous permission-based characteristics and events collected from Android apps and analyses them using a classifier model to determine whether the program is good ware or malware. This method used the machine learning techniques KNN-SVM, DBN, and GRU in which help to find the accuracy which gives the different values like KNN gives 87.20 percents accuracy, SVM gives 91.40 accuracy, Naive Bayes gives 85.10 and DBN-GRU Gives 97.90. Furthermore, in this paper, we simply employ standard machine learning techniques; but, in future work, we will attempt to improve those machine learning algorithms in order to develop a better detection algorithm.

Limiting conditions prediction using machine learning for loss of condenser vacuum event

  • Dong-Hun Shin;Moon-Ghu Park;Hae-Yong Jeong;Jae-Yong Lee;Jung-Uk Sohn;Do-Yeon Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4607-4616
    • /
    • 2023
  • We implement machine learning regression models to predict peak pressures of primary and secondary systems, a major safety concern in Loss Of Condenser Vacuum (LOCV) accident. We selected the Multi-dimensional Analysis of Reactor Safety-KINS standard (MARS-KS) code to analyze the LOCV accident, and the reference plant is the Korean Optimized Power Reactor 1000MWe (OPR1000). eXtreme Gradient Boosting (XGBoost) is selected as a machine learning tool. The MARS-KS code is used to generate LOCV accident data and the data is applied to train the machine learning model. Hyperparameter optimization is performed using a simulated annealing. The randomly generated combination of initial conditions within the operating range is put into the input of the XGBoost model to predict the peak pressure. These initial conditions that cause peak pressure with MARS-KS generate the results. After such a process, the error between the predicted value and the code output is calculated. Uncertainty about the machine learning model is also calculated to verify the model accuracy. The machine learning model presented in this paper successfully identifies a combination of initial conditions that produce a more conservative peak pressure than the values calculated with existing methodologies.

온라인 무료 샘플 판촉의 효과적 활용을 위한 기계학습 기반 고객분류예측 모형 (A Machine Learning-based Customer Classification Model for Effective Online Free Sample Promotions)

  • 원하람;김무전;안현철
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제27권3호
    • /
    • pp.63-80
    • /
    • 2018
  • Purpose The purpose of this study is to build a machine learning-based customer classification model to promote customer expansion effect of the free sample promotion. Specifically, the proposed model classifies potential target customers who are expected to purchase the products included in the free sample promotion after receiving the free samples. Design/methodology/approach This study proposes to build a customer classification model for determining customers suitable for providing free samples by using various machine learning techniques such as logistic regression, multiple discriminant analysis, case-based reasoning, decision tree, artificial neural network, and support vector machine. To validate the usefulness of the proposed model, we apply it to a real-world free sample-based target marketing case of a Korean major cosmetic retail company. Findings Experimental results show that a machine learning-based customer classification model presents satisfactory accuracy ranging from 70% to 75%. In particular, support vector machine is found to be the most effective machine learning technique for free sample-based target marketing model. Our study sheds a light on customer relationship management strategies using free sample promotions.

A Study on Comparison of Lung Cancer Prediction Using Ensemble Machine Learning

  • NAM, Yu-Jin;SHIN, Won-Ji
    • 한국인공지능학회지
    • /
    • 제7권2호
    • /
    • pp.19-24
    • /
    • 2019
  • Lung cancer is a chronic disease which ranks fourth in cancer incidence with 11 percent of the total cancer incidence in Korea. To deal with such issues, there is an active study on the usefulness and utilization of the Clinical Decision Support System (CDSS) which utilizes machine learning. Thus, this study reviews existing studies on artificial intelligence technology that can be used in determining the lung cancer, and conducted a study on the applicability of machine learning in determination of the lung cancer by comparison and analysis using Azure ML provided by Microsoft. The results of this study show different predictions yielded by three algorithms: Support Vector Machine (SVM), Two-Class Support Decision Jungle and Multiclass Decision Jungle. This study has its limitations in the size of the Big data used in Machine Learning. Although the data provided by Kaggle is the most suitable one for this study, it is assumed that there is a limit in learning the data fully due to the lack of absolute figures. Therefore, it is claimed that if the agency's cooperation in the subsequent research is used to compare and analyze various kinds of algorithms other than those used in this study, a more accurate screening machine for lung cancer could be created.

Machine Learning Methodology for Management of Shipbuilding Master Data

  • Jeong, Ju Hyeon;Woo, Jong Hun;Park, JungGoo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.428-439
    • /
    • 2020
  • The continuous development of information and communication technologies has resulted in an exponential increase in data. Consequently, technologies related to data analysis are growing in importance. The shipbuilding industry has high production uncertainty and variability, which has created an urgent need for data analysis techniques, such as machine learning. In particular, the industry cannot effectively respond to changes in the production-related standard time information systems, such as the basic cycle time and lead time. Improvement measures are necessary to enable the industry to respond swiftly to changes in the production environment. In this study, the lead times for fabrication, assembly of ship block, spool fabrication and painting were predicted using machine learning technology to propose a new management method for the process lead time using a master data system for the time element in the production data. Data preprocessing was performed in various ways using R and Python, which are open source programming languages, and process variables were selected considering their relationships with the lead time through correlation analysis and analysis of variables. Various machine learning, deep learning, and ensemble learning algorithms were applied to create the lead time prediction models. In addition, the applicability of the proposed machine learning methodology to standard work hour prediction was verified by evaluating the prediction models using the evaluation criteria, such as the Mean Absolute Percentage Error (MAPE) and Root Mean Squared Logarithmic Error (RMSLE).

Priority-based learning automata in Q-learning random access scheme for cellular M2M communications

  • Shinkafi, Nasir A.;Bello, Lawal M.;Shu'aibu, Dahiru S.;Mitchell, Paul D.
    • ETRI Journal
    • /
    • 제43권5호
    • /
    • pp.787-798
    • /
    • 2021
  • This paper applies learning automata to improve the performance of a Q-learning based random access channel (QL-RACH) scheme in a cellular machine-to-machine (M2M) communication system. A prioritized learning automata QL-RACH (PLA-QL-RACH) access scheme is proposed. The scheme employs a prioritized learning automata technique to improve the throughput performance by minimizing the level of interaction and collision of M2M devices with human-to-human devices sharing the RACH of a cellular system. In addition, this scheme eliminates the excessive punishment suffered by the M2M devices by controlling the administration of a penalty. Simulation results show that the proposed PLA-QL-RACH scheme improves the RACH throughput by approximately 82% and reduces access delay by 79% with faster learning convergence when compared with QL-RACH.