• 제목/요약/키워드: machining theory

검색결과 77건 처리시간 0.024초

2차원 절삭이론을 이용한 정면밀링 절삭력 예측 (Predicting Cutting Forces in Face Milling with the Orthogonal Machining Theory)

  • 김국원
    • 한국정밀공학회지
    • /
    • 제19권12호
    • /
    • pp.150-157
    • /
    • 2002
  • This paper presents an effective cutting force model that enable us to predict the instantaneous cutting force in face milling from a knowledge of the work material properties and cutting conditions. The development of the model is based on the orthogonal machining theory with the effective rake angle which is defined in the plane containing the cutting velocity and chip flow vectors. Face milling testes are performed at different feeds and, a fairly good agreement is shown between the predicted cutting forces and test results.

Predicting cutting forces in face milling with the orthogonal machining theory

  • Kim Kug Wean
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권3호
    • /
    • pp.13-18
    • /
    • 2005
  • This paper presents an effective cutting force model that enables us to predict the instantaneous cutting force in face milling from knowledge of the work material properties and the cutting conditions. The development of the model is based on the orthogonal machining theory with the effective rake angle, which is defined in the plane containing the cutting velocity vector and the chip flow vector. Face milling tests are performed at different feeds and, a fairly good agreement is shown between the predicted cutting forces and the test results.

절삭이론을 이용한 엔드밀 가공에서의 절삭력 예측에 관한 연구 (A Study on the cutting forces prediction using machining theory in end milling)

  • 정성찬;김국원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.928-933
    • /
    • 2004
  • A new approach for modelling and simulation of the cutting forces in end milling processes is presented. In this approach, the cutting forces in end milling are modelled based on a predictive machining theory, in which the machining characteristic factors are predicted from input data of fundamental workpiece material properties, tool geometry and cutting conditions. In the model, each tooth of a end milling cutter is divided into a number of slices along the cutter axis. The cutting action of each of the slices is modelled as an oblique cutting process. For the first slice of each tooth, it is modelled as oblique cutting with end cutting edge effect, whereas the cutting actions of other slices are modelled as oblique cutting without end cutting edge effect. The cutting forces in the oblique cutting processes are predicted using a predictive machining theory. The total cutting forces acting on the cutter is obtained as the sum of the forces at all the cutting slices of all the teeth. A Windows-based simulation system for the cutting forces in end milling is developed using the model. Experimental milling tests have been conducted to verify the simulation system.

  • PDF

Development of new predictive analysis in the orthogonal metal cutting process by utilization of Oxley's machining theory

  • Abdelkader, Karas;Mohamed, Bouzit;Mustapha, Belarbi;Redha, Mazouzi
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1467-1481
    • /
    • 2015
  • This paper presents a contribution to improving an analytical thermo-mechanical modeling of Oxley's machining theory of orthogonal metals cutting, which objective is the prediction of the cutting forces, the average stresses, temperatures and the geometric quantities in primary and secondary shear zones. These parameters will then be injected into the developed model of Karas et al. (2013) to predict temperature distributions at the tool-chip-workpiece interface. The amendment to Oxley's modified model is the reduction of the estimation of time-related variables cutting process such as cutting forces, temperatures in primary and secondary shear zones and geometric variables by the introduction the constitutive equation of Johnson-Cook model. The model-modified validation is performed by comparing some experimental results with the predictions for machining of 0.38% carbon steel.

정면밀링 절삭력 예측을 위한 이론적 모델링 (Theoretical Modeling for the Prediction of Face Milling Forces)

  • 김국원;이우영;최성주
    • 한국기계가공학회지
    • /
    • 제7권3호
    • /
    • pp.96-102
    • /
    • 2008
  • In order to design establish automation or optimization of the machining process, predictions of the forces in machining are often needed. In this paper, a theoretical model in face milling is presented based on Oxley's predictive machining theory, where the cutting forces are predicted from input data of fundamental work material properties, tool geometry and cutting conditions without any preliminary cutting experiment. A simulation system for the cutting forces in face milling is developed using the model. Milling experimental tests are conducted to verify the model and the predictive results are compared and discussed with the experimental results.

  • PDF

열처리 및 비 열처리 AISI4140강의 유동응력 물성치를 기초로 하는 해석적 가공 모델 연구 (An analytical Machining models based on Flow Stress Properties for Non-Heat Treated and Heat Treated AISI 4140 Steel)

  • 이태홍
    • 한국생산제조학회지
    • /
    • 제20권4호
    • /
    • pp.419-426
    • /
    • 2011
  • In this study, an experimental and theoretical program were carried out to determine the cutting forces and chip formation at different cutting speeds using a 0.4mm nose radius ceramic insert and -7 rake angle for non heat-treated AISI 4140 (27HRc) and heat-treated AISI 4140 (45 HRc) steel. The results obtained were compared to show the hardness differences between the materials. The secondary deformation zone thicknesses when comparing the two materials show different physical structure but similar size. These results were also discussed in light of the heat treatment and the effects it had on the machining characteristics of the material. In addition, the Oxley Machining Theory was used to predict the cutting forces for these materials and a comparison made. The predicted cutting performances were verified experimentally and showed good agreement with experimental data.

정면 밀링 가공에서의 비절삭 저항 모델링 및 절삭력 예측 (Modeling of the Specific Cutting Pressure and Prediction of the Cutting Forces in Face Milling)

  • 김국원;주정훈;이우영;최성주
    • 한국공작기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.116-122
    • /
    • 2008
  • In order to establish automation or optimization of the machining process, predictions of the forces in machining are often needed. A new model fur farces in milling with the experimental model based on the specific cutting pressure and the Oxley's predictive machining theory has been developed and is presented in this paper. The specific cutting pressure is calculated according to the definition of the 3 dimensional cutting forces suggested by Oxley and some preliminary milling experiments. Using the model, the average cutting forces and force variation against cutter rotation in milling can be predicted. Milling experimental tests are conducted to verify the model and the predictive results agree well with the experimental results.

Spiroid Bevel Gear 설계 및 가공에 관한 연구 (A study on the design and machining of Spiroid Bevel Gear)

  • 류미라;박영복;이춘만
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.698-701
    • /
    • 1997
  • In this paper, we developed an automated program for the design and machining of spiroid bevel gear. A computer program employing the theory of gearing between gear and pinion is developed to design gear mechanism. A new method for machining spiro야 bevel gears is proposed, and effectively used for an example.

  • PDF

엔드밀 가공에서의 공구 변형에 대한 유한요소해석 (A study on Finite Element Analysis of Tool Deformation in End Milling)

  • 김국원;정성찬
    • 한국산학기술학회논문지
    • /
    • 제6권1호
    • /
    • pp.83-86
    • /
    • 2005
  • 본 연구에서는 절삭 가공시 공구가 받는 절삭력과 칩-공구 사이에서 발생하는 절삭온도에 의한 공구의 변형을 예측하였다. 3D CAD를 이용하여 공구를 모델링 하였으며 절삭력과 절삭온도를 하중조건으로 부여하여 유한요소해석을 수행하였다. 하중조건으로 사용한 절삭력과 절삭온도는 절삭이론을 이용한 절삭력 모델을 사용하여 예측하였으며 실험을 통해 모델의 타당성을 검증하였다. 그러므로 본 연구는 절삭조건과 재료 물성치 그리고 공구 형상만을 알면 이에 따른 절삭력 성분 및 절삭온도 둥을 얻을 수 있고, 이를 이용하여 절삭 가공시 발생하는 공구의 변형을 예측할 수 있다.

  • PDF