• Title/Summary/Keyword: magnesium compounds

Search Result 98, Processing Time 0.03 seconds

Chemical and Biological Analyses of Bay Sediment Where Magnesium Oxide Compounds Are Applied

  • Cho, Daechul;Jiang, Sunny;Kwon, Sung-Hyun
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.101-105
    • /
    • 2014
  • Three magnesium compounds, $MgO_2$, MgO, and $Mg(OH)_2$, which are supposed to supply oxygen continuously, were applied onto contaminated bay sediment and its ecology in order to activate the local microbial flora. Those compounds were found to reduce chemical oxygen demand (COD), total nitrogen (T-N), and total phosphorus (T-P). Magnesium oxide, in particular, reduced COD by 30% and T-N and T-P considerably. All compounds also suppressed the release of pollutants in the order $MgO_2$, MgO, and $Mg(OH)_2$. Analysis of microbial flora showed that the microbial group treated by $MgO_2$ and $Mg(OH)_2$ was predictably stable; meanwhile, that treated by MgO increased the number of species, but decreased the total number of microorganisms.

Relationship of Magnesium Source and MAP Crystallization Efficiency (마그네슘 공급원과 MAP 결정화 효율과의 관계)

  • Ahn, Johwan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.1
    • /
    • pp.33-39
    • /
    • 2022
  • Batch experiments were conducted to find out the effects of various types of magnesium compounds on phosphorus recovery by magnesium ammonium phosphate (MAP) crystallization. The phosphorus recovery from the centrate of anaerobic digested sludge was performed using magnesium chloride, magnesium hydroxide and magnesium oxide under different pH (7.5, 8.0 and 8.5) and Mg/P molar ratio (1.0, 1.5, 2.0, 2.5) conditions. The phosphorus recovery rate increased with increasing pH and Mg/P molar ratio in all magnesium compounds. At pH 7.5, magnesium oxide showed the highest phosphorus recovery rate, followed by magnesium hydroxide and magnesium chloride. However, at pH 8.5, more than 90% of phosphorus recovery rate was obtained in all Mg/p molar ratios. Thus, it is expected that magnesium hydroxide and magnesium oxide are able to replace magnesium chloride as a magnesium source in terms of phosphorus recovery efficiency and cost.

Effect of Heat Treatment on the Microstructure and Damping Capacity of Hot Rolled Magnesium Alloys (열간 압연 한 Mg합금의 미세조직과 감쇠능에 미치는 열처리의 영향)

  • Lee, Gyu-Hyun;Kim, Kwon-Hoo;Kang, Chang-Yong
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.66-71
    • /
    • 2014
  • In this study, effect of heat treatment on the microstructure and damping capacity of hot rolled magnesium alloys was investigated. The microstructure of hot rolled magnesium consisted of dendrite structure and $Mg_{17}Al_{12}$ compounds precipitated along the grain boundry. The dendrite structure was dissipated and $Mg_{17}Al_{12}$ compounds was decomposed by annealing treatment, and then they dissolved in ${\alpha}-Mg$. With an increasing the annealing temperature and time, damping capacity was slowly increased by the growth of grain size and decreasing of defects induced by hot rolling. Two kinds of magnesium alloys AZ 31 and AZ 61 after annealing showed no difference in damping capacity.

Comparing of 5-Nonylsalicylaldoxime and Salicylaldehyde Characterization Using Magnesium Salt Formylation Process

  • Pouramini, Zeinab;Moradi, Ali
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.3
    • /
    • pp.357-362
    • /
    • 2012
  • 5-Nonylsalicylaldoxime and salicylaldehyde are two derivatives of phenolic compounds which are very applicable materials in industries. Formerly the formylation of phenolic derivatives were carried out by Rimer-Tiemann method. In this work both of these two materials were synthesized by magnesium meditated formylation technique and their structural characterizations were compared by instrumental analysis technique. In order to achieve a selectively orthoformylated product, the hydroxyl group of nonylphenol (or phenol) was first modified by magnesium methoxide. The nonylphenol magnesium salt was then formylated by paraformaldehyde. The oximation reaction was finally applied to the prepared nonylsalicylaldehyde magnesium salt by liquid extracting via water and acid washing and other extractions. The solvent was finally removed by evaporation under reduced pressure. Some instrumental analysis such as $^1H$-NMR, GC/MS and FT-IR spectra were taken on the product in order to interpret the reaction characterization quantitatively and qualitatively. The formaldehyde and oxime functional groups of two compounds were investigated through $^1H$-NMR and FT-IR spectra and were compared. The yield of methoxilation was very good and the yields of formylation and oximation reactions were about 90%and 85% respectively. The orthoselectivity of formylation reaction were evaluated by comparing of the relevant spectra. The GC/MS spectra also confirmed the obtained results.

Inhibitory Effects of Magnesuim Carbonate on Cytotoxicity, Genotoxicity, Mutagenicity, and Cell Transformation by Nickel Subsulfide (Nickel Subsulfide의 세포독성, 유전독성, 변이원성 및 세포변이에 대한 Magnesuim Carbonate의억제효과)

  • 하은희;홍윤철;윤임중
    • Environmental Mutagens and Carcinogens
    • /
    • v.19 no.1
    • /
    • pp.20-27
    • /
    • 1999
  • In order to know the inhibitory effect of magnesium carbonate(MgCO3) on cytotoxicity, DNA damage, mutagenicity, and cell transforming ability of nickel subsulfide, the inhibition of cell proliferation, DNA-protein crosslinks formation (DPC), HGPRT point mutation, and cell transformation were evaluated. Nickel subsulfide(Ni3S2) and magnesium carbonate as insoluble compounds were used for this study. BALB/3T3 cell, CHO-K1 cell, and C3H10T1/2 cell were used in this experiment. Exposure concentration of nickel subsulfide was 1 $\mu\textrm{g}$/ml. The concentrations of magnesium carbonate in this study were 0.6 $\mu\textrm{g}$/ml, 1.2 $\mu\textrm{g}$/ml, 2.4 $\mu\textrm{g}$/ml and the molar ratio of magnesium to nickel when exposed simultanously were 0.5, 1.0 and 2.0 respectively. The results were as follows; 1. Magnesium carbonate reduced the inhibitory effect of nickel subsulfide on cell proliferation. 2. Magnesium carbonate also reduced the effect of nickel subsulfide on DNA-protein crosslinks formation. 3. HGPRT point mutagenicity of nickel subsulfide was reduced when magnesium carbonate treated simultaneously. 4. Magnesium carbonate reduced cell transforming ability of nickel subsulfide. Conclusively, nickel subsulfide showed cytotoxicity, cell transforming ability, and mutagenicity strongly and magnesium carbonate may have protective roles in these nickel effects.

An Efficient Method for Multicomponent Synthesis of Spiro[4H-pyran-oxindole] Derivatives Catalyzed by Magnesium Perchlorate

  • Wu, Chunlei;Shen, Runpu;Chen, Jianhui;Hu, Chunqi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2431-2435
    • /
    • 2013
  • A simple and efficient method for the synthesis of spiro[4H-pyran-oxindole] derivatives by means of three-component reactions between isatins, malononitrile or ethyl cyano-acetate, and 1,3-dicarbonyl compounds in the presence of catalytic amount of magnesium perchlorate in 50% aqueous ethanol medium has been described.

Relationship between Tensile Strength and Damping Capacity of Annealed Magnesium Alloys after Hot Rolling (열간 압연 후 어닐링처리한 Mg 합금의 인장강도와 감쇠능과의 관계)

  • Lee, Gyu-Hyun;Oh, Eun-Ji;Kim, Kwon-Hoo;Kim, Jae-Nam;Kang, Chang-Yong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.6
    • /
    • pp.295-301
    • /
    • 2014
  • In this study, the relationship between strength and damping capacity of annealed magnesium alloys after hot rolling was investigated. The microstructure of hot rolled magnesium consisted of dendrite structure and $Mg_{17}Al_{12}$ compounds precipitated along the grain boundary. The dendrite structure was dissipated, $Mg_{17}Al_{12}$ compounds was decomposed by annealing, and then its dissolved in ${\alpha}$-Mg. With an increasing the annealing temperature and time, strength was slowly decreased and damping capacity was slowly increased by the growth of grain size and decreasing of defects induced by hot rolling. In annealing treatmented magnesium alloys after hot rolling, damping capacity was decreased rapidly with an increase of strength. There was on proportional relationship between tensile strength, and damping capacity.

Chemical Forms of Ca, Mg Compounds Occuring in Perilla Leaves and Their Changes after Harvest (깻잎에 있어 Ca, Mg의 존재형태와 수확후의 변화)

  • 최영희
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.11 no.4
    • /
    • pp.274-280
    • /
    • 2001
  • The chemical forms of calcium compounds in perilla leaves and their changes after harvest were investigated. The four types of calcium compounds extracted were as follows: water soluble calcium(F-I: mainly water soluble organic acid salts and calcium ion), IN-sodium chloride soluble calcium(F-II: calcium-pectate and calcium-carbonate), 2%-acetic acid soluble calcium(F-III: calcium-phosphate), and 5%-hydrochloric acid soluble calcium(F-IV: calcium-oxalate). The calcium content of perilla leaves was not found to vary with their age. Relatively high levels of F-l (28.4~39.5) and F-II (34.4~47.4) were found in young and mature leaves while the F-IV constituted 15.6~21.6% of the total calcium. The F-IV calcium contents of perilla. spinach and jaso were 16.8, 42.4 and 22.3%, respectively. In contrast to calcium. magnesium existed as water soluble magnesium at the highest content of 90.6% in spinach while 62.9% and 16.8% of the total magnesium existed as water soluble magnesium in perilla and jaso, repectively. The change in vitamin C and F-IV calcium content were examined for 7 days after harvest. Vitamin C content decreased slowly at the beginning but rapidly from the 4th day after harvest. On the other hand, the F-IV calcium content increased slowly at the beginning and rapidly from the 4th day of observation. This result suggests that the increase in F-IV calcium is related to the decrease in vitamin C content. This phenomena was more distinctly observed at 2$0^{\circ}C$ than 5$^{\circ}C$.

  • PDF

Characteristics of Environmentally-Friendly Conversion Coating of AZ31 Magnesium Alloy by a Alkaline Phosphate-Permanganate Solution (알카리성 인산-과망간산 용액을 이용한 AZ31 마그네슘 합금의 친환경 화성 처리 및 화성 피막의 특성 평가)

  • Kim, Myung-Hwan;Lee, Man-Sig;Kwag, Sam-Tag;Moon, Myung-Jun
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.3
    • /
    • pp.82-88
    • /
    • 2011
  • A uniform chromium-free conversion coating treated with an alkaline phosphate- permanganate solution was formed on the AZ 31 magnesium alloy. The effect of acid pickling on the morphology and on the corrosion resistance of the alkaline phosphate-permanganate conversion coating was investigated. The chemical composition and phase structure of conversion coating layer were determined via optical microscopy, SEM, EDS, XPS and XRD. Results show that the conversion coatings are relatively uniform and continuous, with thickness 1.8 to $2.4\;{\mu}m$. The alkaline phosphate-permanganate conversion coating was mainly composed of elements Mg, O, P, Al and Mn. The conversion-coated layers were stable compounds of magnesium oxide and spinel ($MgAl_2O_4$). These compounds were excellent inhibitors to corrosion. The electrochemical corrosion behaviors of coatings in 3.5 wt.% NaCl solutions were evaluated by electrochemical impedance spectroscopy, potentiodynamic polarization technique. EIS results showed a polarization resistance of $0.1\;k{\Omega}$ for the untreated Mg and $16\;k{\Omega}$ for the alkaline phosphate-permanganate conversion treatment sample, giving an improvement of about 160 times. The results of the electrochemical measurements demonstrated that the corrosion resistance of the AZ 31 magnesium alloy was improved by the alkaline phosphate-permanganate conversion treatment.