• Title/Summary/Keyword: magnetic hysteresis measurement

Search Result 53, Processing Time 0.024 seconds

Major B-H Loop Measurement of Toroidal Shape Magnetic Powder Core (토로이드형 분말코어의 Major B-H Loop 측정)

  • Son, Derac
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.3
    • /
    • pp.76-80
    • /
    • 2014
  • Toroidal cores made of metallic powder requires large magnetic field strength up to few decade kA/m to obtain major hysteresis loop. To overcome thermal heat generation problem from large exciting current during measurement, we have employed a real time hysteresis loop tracer which can digitize and calculate B-H signals in personal computer as real time. For example, when we magnetize specimen at 10 Hz frequency, we could display hysteresis loops 10 times per second. Using the real time hysteresis loop tracer, we could measure major hysteresis loop of toroidal shape metallic powder core at maximum flux density or maximum magnetic field strength to be measured within 5 second not to significant increasement of specimen temperature due to the heat dissipation from coil windings. For the constructed hysteresis loop tracer, we could measure hysteresis loop at magnetic field strength higher than 50 kA/m for the toroidal shape specimen.

Measurement of AC Hysteresis Loops under Variable Tensile Stress for Amorphous Wire (비정질 세선의 인장응력에 따른 교류자기이력 특성측정)

  • 조희정;양종만;손대락;김구영
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.1
    • /
    • pp.61-64
    • /
    • 1993
  • We have constructed a hysteresis loop tracer in order to measure the magnetic properties of amorphous wires under variable tensile stress. It has a force range of 0 N to 20 N and a magnetizing frequency of 1 kHz to 20 kHz. Using the ac-hysteresis loop tracer, we can measure the magnetic properties(maximum magnetic induction $B_{max}$, residual magnetic induction $B_{r}$, coercive field strength $H_{c}$, etc.) of amorphous wires with precision of 1% under variable tensile stresses.

  • PDF

Optical Measurement of Magnetic Anisotropy Field in Nanostructured ferromagnetic Thin Films

  • Whang, Hyun-Seok;Yun, Sang-Jun;Moon, Joon;Choe, Sug-Bong
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.8-10
    • /
    • 2015
  • The magnetic anisotropy field plays an important role in spin-orbit-torque-induced magnetization dynamics with electric current injection. Here, we propose a magnetometric technique to measure the magnetic anisotropy field in nanostructured ferromagnetic thin films. This technique utilizes a magneto-optical Kerr effect microscope equipped with two-axis electromagnets. By measuring the out-of-plane hysteresis loops and then analyzing their saturated magnetization with respect to the in-plane magnetic field, the magnetic anisotropy field is uniquely quantified within the context of the Stoner-Wohlfarth theory. The present technique can be applied to small nanostructures, enabling in-situ determination of the magnetic anisotropy field of nanodevices.

Evaluation of Microstructures and Mechanical Property of Variously Heat Treated 0.85% Carbon Steel by Magnetic Method (자기적 방법에 의한 0.85% 탄소강의 열처리에 따른 미세조직 및 기계적 성질 평가)

  • Byeon, Jai-Won;Kwun, S.I.
    • Korean Journal of Materials Research
    • /
    • v.13 no.2
    • /
    • pp.81-87
    • /
    • 2003
  • Microstructures and mechanical properties of variously heat treated 0.85% carbon steel(eutectoid steel) were evaluated by magnetic property measurements. Microstructural analysis (pearlite interstellar spacing), measurement of mechanical properties(Rockwell hardness, yield stress, fracture stress) and magnetic properties(coercivity, remanence, hysteresis loss, saturation magnetization) were performed to clarify mutual relationships among these parameters. Water quenched specimens with martensite structure showed much higher coercivity and remanence than air cooled or furnace cooled specimens with pearlite structure. The linear dependence of coercivity and remanence on pearlite interlamellar spacing as well as on Rockwell hardness, yield stress and fracture stress was observed in the pearlitic steel. Hysteresis loss and saturation magnetization showed no distinct trend with pearlite interlamellar spacing.

A Study on Contactless Identification of Impellers Using a Digital Hall Sensor (디지털 홀 센서를 이용한 비접촉 임펠러 식별에 대한 연구)

  • Lee, Ho-Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.71-77
    • /
    • 2021
  • An impeller identification technique that is essential for adding viscosity measurement functions to overhead stirrers is presented in this study. Previous studies have revealed that using magnets facing the same poles arranged in a row can aid in distinguishing the types of impellers by detecting the number of magnets in a non-contact manner. However, as these previous studies measured the magnetic fields using analog Hall sensors, a converting circuit for the digital signals is required that can interface with the MCU. In this study, it was demonstrated that the number of magnets can be distinguished without using a separate conversion circuit by using a Hall sensor with a digital output. Owing to the unique hysteresis characteristics of digital Hall sensors, it was confirmed through experiments that the complex and diverse outputs appear depending on the direction of the magnetic field, the arrangement of magnetic poles, and the moving direction of the magnet. The measurement of the magnetic field showed that an edge signal equal to the number of magnets inserted into the impeller was detected when the radial direction was used, and the south pole was first approached.

Comparison of Different Techniques for Measurement of Cold Work in Mild Steel

  • Badgujar, B.P.;Jha, S.K.;Goswami, G.L.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.6
    • /
    • pp.616-621
    • /
    • 2003
  • There are various Non-Destructive Evaluation (NDE) techniques used for measurement of residual stresses in material, such as magnetic methods, X-ray diffraction, Ultrasonic velocity measurement etc. The capabilities, applications and limitations of these techniques for evaluation of cold work/plastic deformation were studied and compared. Mild steel plates were subjected to different degree of cold deformation and were analyzed by Magneto-mechanical Acoustic Emission (MAE), Barkhausen Noise (BN) and magnetic properties (hysteresis loop parameters analysis). Further, these specimens were analyzed by X-ray diffraction and ultrasonic velocity measurements. The microhardness measurement and microstructure studies of these cold worked plates were also carried out. The results of all these studies and comparison of different techniques are discussed in this paper.

Magnetic Hysteresis Monitoring according to the Change of Tensile Force and Steel Class of PS Tendons (PS 텐던 강종별 긴장력 변화에 따른 자기이력 모니터링)

  • Kim, Junkyeong;Park, Seunghee;Lee, Hwanwoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.2
    • /
    • pp.115-120
    • /
    • 2018
  • This paper introduces a magnetic hysteresis monitoring result to apply an EM sensing technique for estimating tensile force of PSC girder to various class of PS tendon. The tensile force of PS tendon is a very important factor in the performance evaluation of PSC bridges. However, in this time, the tensile force was just measured only during construction and it does not monitored after construction. To measure the tensile force of PS tendons, the EM sensing based NDT method was developed but the proposed method cannot be applied to various class of PS tendons. Thus this study performed the magnetic hysteresis measurement according to the tensile force for class B, C and D PS tendons through experimental study. The specific tensile forces(50, 100, 150, 180kN) were induced to the each specimens and the magnetic hysteresis curve was measured at each point. The permeability of specimens were gradually decreased according to increase of tensile force. Especially, the slopes of permeability variation of class B and C were similar while that of class D was different.

A Study of Characteristic of Electrical-magnetic and Neutron Diffraction of Long-wire High-superconductor for Reducing Energy Losses

  • Jang, Mi-Hye
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.265-272
    • /
    • 2008
  • In this paper, AC losses of long wire Bi-2223 tapes with different twist pitch of superconducting core were fabricated, measured and analyzed. These samples produced by a powder-in-tube method are multi-filamentary tape with Ag matrix. Also, it's produced by non-twist. The critical current measurement was carried out under the environment in Liquid nitrogen and in zero field by 4-prob method. And the Magnetic measurement was carried out under the environment of applied time-varying transport current by transport method. From experiment, the susceptibility measurements were conducted while cooling in a magnetic field. Flux loss measurements were conducted as a function of ramping rate, frequency and field direction. The AC flux loss increases as the twist-pitch of the tapes decreased, in agreement with the Norris Equation. Neutron-diffraction measurements have been carried out investigate the crystal structure, magnetic structures, and magnetic phase transitions in Bi-2223([Bi, Pb]:Sr:Ca:Cu:O).

The magnetic properties in Bi$_2$Sr$_2$CaCu$_2$O$_8$ single crystal with columnar defects

  • Lee, C.W.;Shim, S.Y.;Ha, D.H.;Kim, D.H.;Lee, T.W.
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.103-106
    • /
    • 2000
  • We have studied the magnetic properties in Bi$_2$Sr$_2$CaCu$_2$O$_8$ single crystal with columnar defects using micro Hall-probe array. We found that fold profiles inside sample were similar to the Bean's critical state model from the magnetic hysteresis measurement. In the magnetic relaxation measurement, the normalized relaxation rates were maximum near the center and decreased toward the edge of the sample expect zero gauss. The relaxation rates as a function of the temperature were maximum near the 40K and rapidly decreased both sides of the peak.

  • PDF