• Title/Summary/Keyword: magneto-optic recording

Search Result 17, Processing Time 0.023 seconds

Optical Cap Sensor for Magneto-Optic Near-Field Recording (MO 근접장 기록을 위한 광학 갭 센서)

  • Yoon, Yong-Joong;Park, Jae-Hyuk;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.245-250
    • /
    • 2004
  • This paper proposes a new method of measuring an air interface distance between a solid immersion lens(SIL) applied magneto-optic technology and the disk surface. For applying near-field recording (NFR) technology to the magneto-optic storage devices for the next generation, it is positively necessary to maintain the small air gap under about 100㎚. We design an apparatus that consists of some optical components such as a prism, a polarizer and an analyzer. By using the Fresnel reflection coefficient equation, Jones matrices calculation and Malus's law, we establish a mathematical model for understanding the characteristics of the system. The simulations are based on the mathematical model and through the simulation results which is made with various cases we can estimate the performance of the new optical gap sensor system. Experimental results, which are also based on the mathematical model for specific cases, are in good agreement with simulated ones and demonstrate the possibility as the new optical gap sensor.

Fabrication of Bismuth- and Aluminum-Substituted Dysprosium Iron Garnet Films for Magneto-Optic Recording by Pyrolysis and Their Magnetic and Magneto-Optic Properties

  • Cho, Jae-Kyong
    • The Korean Journal of Ceramics
    • /
    • v.1 no.2
    • /
    • pp.91-95
    • /
    • 1995
  • Polycrystalline bismuth- and aluminum- substituted dysporsium and yttrium iron garnet (Bi2R3-xAlyFe5-yO12, R=Dy or Y, $0\leqx\leq3, \; 0\leqy\leq3$) films have been prepared by pyrolysis. The crystallization temperatures, the solubility limit of bismuth ions into the garnet phase, and magnetic and magneto-optic properties of the films have been investigated as a function of bismuth and aluminum concentration. It was found that the crystallization temperatures as a function of bismuth and aluminum concentration. It was found that the crystallization temperatures of these films rapidly decreased as bismuth concentration. It was found that the crystallization temperatures of these films rapidly decreased as bismuth concentration (x) increased up to x=1.5 and then remained temperatures of these films rapidly decreased as bismuth concentration (x) increased up to x=1.5 and then remained unchanged at x>1.5, whereas, showed no changes as aluminum concentration (y) increased up to y=1.0 and then gradually increased at y>1.0. The solubility limit of bismuth ions was x=1.8 when y=0 but increased to x=2.3 when y=1.0. It was demonstrated that the magnetic and magneto-optic properties of the dysprosium iron garnet films could be tailored by bismuth and aluminum substitution suitable for magneto-optic recording as follows. The saturation magnetization and coercivity data obtained for the films indicated that the film composition at which the magnetic compensation temperature became room temperature was y=1.2 when x=1.0. Near this composition the coercivity and the squareness of the magnetic hysteresis loop of the films were several kOe and unit, respectively. The Curie temperatures of the films increased with the increase of x but decreaed with the increase of y, and was 150-$250^{\circ}C$ when x=1.0 and y=0.6-1.4. The Faraday rotation at 633 nm of the films increased as x increased but decreased as y increased, and was 1 deg/$\mu\textrm{m}$ when x=1.0 and y=1.0. Based on the data obtained, the appropriate film composition for magneto-optic recording was estimated as near x=1.0 and y=1.0 or $BiDy_2AlFe_4O_{12}$.

  • PDF

Comparisons of Magnetic and Magneto-Optic Properties between Fe-rich and Nd-rich Amorphous $Nd_xFe_{1-x} $Alloys

  • Kim, Jae-Young;Kim, Jeoung-Hoon;Oh, Hyun-Woo
    • Journal of Magnetics
    • /
    • v.3 no.2
    • /
    • pp.49-54
    • /
    • 1998
  • Dependence of magnetic and magneto-optic properties on composition of amorphous NdFe alloys has been studied to identify a promising magneto-optic recording material in the wavelength of a blue laser beam. From the view point of crystallographic state, perpendicular magnetic anisotropy energy and polar Kerr rotation angle, the Nd-rich region was found to be suitable for the research purpose.

  • PDF

Simulation of Temperature Distribution and Readout Signal of Magnetic Amplifying Magnetooptical System (도메인 확장형 광자기 디스크의 온도분포 및 재생신호 시뮬레이션)

  • Yang, Jae-Nam;Jo, Soon-Chul
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.2
    • /
    • pp.65-70
    • /
    • 2004
  • Read out signal and temperature distribution of magnetic amplifying magnetooptical disk were studied. Temperature distribution of recording layer and adjacent layers were calculated when the disk was at rest. Mark size, length and location were simulated from a chain of recording beam pulses. In addition, signal amplitude depending on the shape of the marks, readout signals from the recording layer and amplified marks of the readout layer, were simulated. Simplified thermal conduction model was used to calculate the temperature distribution of recording and adjacent layers as a function of time as well as to calculate the mark size, length and location. Readout signal was calculated by the convolution of the disk reflectivity and the Gaussian beam intensity. Readout signal from the mark in the readout layer amplified to the size of the laser beam fumed out to be twice as large as the signal from the crescent shaped mark in the recording layer.

Changes in the Modulation Amplitude and the Particle Sizes of Co/Pd Multilayers During Stress Release and Interdiffusion

  • Kim, Jai-Young;Evetts, Jan-E
    • Journal of Magnetics
    • /
    • v.3 no.1
    • /
    • pp.21-30
    • /
    • 1998
  • An artificially modulated magnetic Co/Pd multilayer is one of the promising candidates for high density magneto-optic (MO) recording media, due to large Kerr rotation angle in the wavelength of a blue laser beam. however, since multilayer structure, as well as amorphous structure, is a non-equilibrium state in terms of free energy and MO recording is a kind of thermal recording which is conducted aound Curie temperature (Tc) of the recording media, when the multilayer is used for the MO recording media, changes in the multilayer structure are occurred as the amorphous structure do. Therefore, the assessment of the structural stability in the Co/Pd multilayer is crucially important both for basic research and applications. As the parameter of the structural stability in this research, modulation amplitude and particle size of the Co/Pd multilayer are measured in terms of Ar sputtering pressure and heat treatment temperature. From the results of the research, we find out that the magnetic exchange energy in the structural changes of a magnetic multilayer structure and suggest the operating temperature range for MO recording in the Co/Pd multilayer for the basic research and applications, respectively.

  • PDF

An Optical Micro-Magnetic Device: Magnetic-Spatial Light Modulator

  • Park, Jae-Hyuk;Inoue, M.;Cho, Jae-Kyeong;Nishimura, K.;Uchida, H.
    • Journal of Magnetics
    • /
    • v.8 no.1
    • /
    • pp.50-59
    • /
    • 2003
  • Spatial light modulators (SLMs) are centrally important devices in volumetric recording, data Processing, Pattern recognition and other optical systems. Various types of reusable SLMs with two-dimensional pixel arrays have been intensively developed. Of these, magneto-optic spatial light modulators (MOSLMs) have advantages of high switching speed, robustness, nonvolatility, and radioactive resistance. In this article, we review recent development work on MOSLMs, mainly in relation to our own studies.

Microscopic Interdiffusion in Multilayer Structure

  • Kim, Jai-Young
    • Journal of Magnetics
    • /
    • v.2 no.2
    • /
    • pp.58-66
    • /
    • 1997
  • Recently, artificially modulated magnetic multilayer materials, for examples giant magnetoresistant magnetic head materials and magneto-optic recording materials in the wavelength of a blue laser beam, attract great attention in the electronics industry due to their unique properties derived from the modulated multilayer structure. Since the multilayer structure as well as amorphous structure, is non-equilibrium state in terms of free energy, an assessment of the thermal staibility in the multilayer structure is crucially importnat both for basic research and applications. In this review paper, effective microscopic interdiffusion process in the two dimensional multilayer structure will be described in terms of steep concentration gradient effect, strain effect and magnetic transition effect.

  • PDF